ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray eclipse of the dwarf nova HT CAS observed by the XMM-Newton satellite: spectral and timing analysis

79   0   0.0 ( 0 )
 نشر من قبل Achille A. Nucita
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A cataclysmic variable is a binary system consisting of a white dwarf that accretes material from a secondary object via the Roche-lobe mechanism. In the case of long enough observation, a detailed temporal analysis can be performed, allowing the physical properties of the binary system to be determined. We present an XMM-Newton observation of the dwarf nova HT Cas acquired to resolve the binary system eclipses and constrain the origin of the X-rays observed. We also compare our results with previous ROSAT and ASCA data. After the spectral analysis of the three EPIC camera signals, the observed X-ray light curve was studied with well known techniques and the eclipse contact points obtained. The X-ray spectrum can be described by thermal bremsstrahlung of temperature $kT_1=6.89 pm 0.23$ keV plus a black-body component (upper limit) with temperature $kT_2=30_{-6}^{+8}$ eV. Neglecting the black-body, the bolometric absorption corrected flux is $F^{rm{Bol}}=(6.5pm 0.1)times10^{-12}$ erg s$^{-1}$ cm$^{-2}$, which, for a distance of HT Cas of 131 pc, corresponds to a bolometric luminosity of $(1.33pm 0.02)times10^{31}$ erg s$^{-1}$. The study of the eclipse in the EPIC light curve permits us to constrain the size and location of the X-ray emitting region, which turns out to be close to the white dwarf radius. We measure an X-ray eclipse somewhat smaller (but only at a level of $simeq 1.5 sigma$) than the corresponding optical one. If this is the case, we have possibly identified the signature of either high latitude emission or a layer of X-ray emitting material partially obscured by an accretion disk.

قيم البحث

اقرأ أيضاً

132 - R. Baptista 2011
We report results of the eclipse mapping analysis of an ensemble of light curves of HT Cas. The fast response of the white dwarf to the increase in mass transfer rate, the expansion rate of the accretion disc at the same time, and the relative amplit ude of the high-frequency flickering indicate that the quiescent disc of HT Has has high viscosity, alpha ~ 0.3-0.7. This is in marked disagreement with the disc-instability model and implies that the outbursts of HT Cas are caused by bursts of enhanced mass-transfer rate from its donor star.
The study of X-ray reprocessing is one of the key diagnostic tools to probe the environment in X-ray binary systems. One difficult aspect of studying X-ray reprocessing is the presence of much brighter primary radiation from the compact star together with the reprocessed radiation. In contrast for eclipsing systems, the X-rays we receive during eclipse are only those produced by reprocessing of the emission from the compact star by the surrounding medium. We report results from a spectral study of the X-ray emission during eclipse and outside eclipse (when available) in 9 high mass X-ray binaries (HMXBs) with XMM- Newton EPIC pn to investigate different aspects of the stellar wind in these HMXBs. During eclipse the continuum component of the spectrum is reduced by a factor of $sim$8-237, but the count-rate for 6.4 keV Iron emission line or complex of Iron emission lines in HMXBs are reduced by a smaller factor leading to large equivalent widths of the Iron emission lines. This indicates a large size for the line emission region, comparable to or larger than the companion star in these HMXB systems. However there are significant system to system differences. 4U 1538$-$52, in spite of having a large absorption column density, shows a soft emission component with comparable flux during the eclipse and out-of-eclipse phases. Emission from Hydrogen-like Iron has been observed in LMC X-4 for the first time, in the out-of-eclipse phase in one of the observations. Overall, we find significant differences in the eclipse spectrum of different HMXBs and also in their eclipse spectra against out-of-eclipse spectra.
We have carried out a study of the X-ray properties of the supernova remnant (SNR) population in M33 with XMM-Newton, comprising deep observations of 8 fields in M33 covering all of the area within the D$_{25}$ contours, and with a typical luminosity of 7.1$times$10$^{34}$ erg s$^{-1}$ (0.2-2.0 keV) . Here we report our work to characterize the X-ray properties of the previously identified SNRs in M33, as well as our search for new X-ray detected SNRs. With our deep observations and large field of view we have detected 105 SNRs at the 3$sigma$ level, of which 54 SNRs are newly detected in X-rays, and three are newly discovered SNRs. Combining XMM-Newton data with deep Chandra survey data allows detailed spectral fitting of 15 SNRs, for which we have measured temperatures, ionization timescales, and individual abundances. This large sample of SNRs allows us to construct an X-ray luminosity function, and compare its shape to luminosity functions from host galaxies of differing metallicities and star formation rates to look for environmental effects on SNR properties. We conclude that while metallicity may play a role in SNR population characteristics, differing star formation histories on short timescales, and small-scale environmental effects appear to cause more significant differences between X-ray luminosity distributions. In addition, we analyze the X-ray detectability of SNRs, and find that in M33 SNRs with higher [SII]/H$alpha$ ratios, as well as those with smaller galactocentric distances, are more detectable in X-rays.
The XMM-Newton observatory shows evidence with an $11 sigma$ confidence level for seasonal variation of the X-ray background in the near-Earth environment in the 2-6 keV energy range (Fraser et al. 2014). The interpretation of the seasonal variation given in Fraser et al. 2014 was based on the assumption that solar axions convert to X-rays in the Earths magnetic field. There are many problems with this interpretation, since the axion-photon conversion must preserve the directionality of the incoming solar axion. At the same time, this direction is avoided by the observations because the XMM-Newtons operations exclude pointing at the Sun and at the Earth. The observed seasonal variation suggests that the signal could have a dark matter origin, since it is very difficult to explain with conventional astrophysical sources. We propose an alternative explanation which involves the so-called Axion Quark Nugget (AQN) dark matter model. In our proposal, dark matter is made of AQNs, which can cross the Earth and emit high energy photons at their exit. We show that the emitted intensity and spectrum is consistent with Fraser et al. 2014, and that our calculation is not sensitive to the specific details of the model. We also find that our proposal predicts a large seasonal variation, on the level of 20-25%, much larger than conventional dark matter models (1-10%). Since the AQN emission spectrum extends up to $sim$100 keV, well beyond the keV sensitivity of XMM-Newton, we predict the AQN contribution to the hard X-ray and $gamma$-ray backgrounds in the Earths environment. The Gamma-Ray Burst Monitor instrument (GBM), aboard the Fermi telescope, is sensitive to the 8 keV-40 MeV energy band. We suggest that the multi-year archival data from the GBM could be used to search for a seasonal variation in the near-Earth environment up to 100 keV as a future test of the AQN framework.
MCG-6-30-15, at a distance of 37 Mpc (z=0.008), is the archetypical Seyfert 1 galaxy showing very broad Fe K$alpha$ emission. We present results from a joint NuSTAR and XMM-Newton observational campaign that, for the first time, allows a sensitive, t ime-resolved spectral analysis from 0.35 keV up to 80 keV. The strong variability of the source is best explained in terms of intrinsic X-ray flux variations and in the context of the light bending model: the primary, variable emission is reprocessed by the accretion disk, which produces secondary, less variable, reflected emission. The broad Fe K$alpha$ profile is, as usual for this source, well explained by relativistic effects occurring in the innermost regions of the accretion disk around a rapidly rotating black hole. We also discuss the alternative model in which the broadening of the Fe K$alpha$ is due to the complex nature of the circumnuclear absorbing structure. Even if this model cannot be ruled out, it is disfavored on statistical grounds. We also detected an occultation event likely caused by BLR clouds crossing the line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا