ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure Tuning of an Ionic Insulator into a Heavy Electron Metal: An Infrared Study of YbS

70   0   0.0 ( 0 )
 نشر من قبل Masaharu Matsunami
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical conductivity [$sigma(omega)$] of YbS has been measured under pressure up to 20 GPa. Below 8 GPa, $sigma(omega)$ is low since YbS is an insulator with an energy gap between fully occupied 4$f$ state and unoccupied conduction ($c$) band. Above 8 GPa, however, $sigma(omega)$ increases dramatically, developing a Drude component due to heavy carriers and characteristic infrared peaks. It is shown that increasing pressure has caused an energy overlap and hybridization between the $c$ band and 4$f$ state, thus driving the initially ionic and insulating YbS into a correlated metal with heavy carriers.

قيم البحث

اقرأ أيضاً

64 - M. Ricco , G. Fumera , T. Shiroka 2003
A singular evolution toward an insulating phase, shown by 23Na and 13C NMR, has been observed in the superconducting fullerides (NH3)xNaK2C60 for x>1. Unlike most common cases, this insulating phase is non magnetic and 13C spin lattice relaxation sho ws the presence of a spin gap. These two features suggest that a charge disproportion from C60^(3-) to C60^(2-) and C60^(4-) can drive the system from the metallic to the insulating state. The restoring of the Na+ cation in the center of the octahedral interstice in the insulating phase, as indicated by 23Na and 2H lineshape analysis, confute the current belief that the cation off-centering is effective in quenching the superconductivity.
150 - N. Paris , K. Bouadim , F. Hebert 2006
We study the transitions from band insulator to metal to Mott insulator in the ionic Hubbard model on a two dimensional square lattice using determinant Quantum Monte Carlo. Evaluation of the temperature dependence of the conductivity demonstrates th at the metallic region extends for a finite range of interaction values. The Mott phase at strong coupling is accompanied by antiferromagnetic (AF) order. Inclusion of these intersite correlations changes the phase diagram qualitatively compared to dynamical mean field theory.
We show that the pressure-temperature phase diagram of the Mott insulator Ca$_{2}$RuO$_{4}$ features a metal-insulator transition at 0.5GPa: at 300K from paramagnetic insulator to paramagnetic quasi-two-dimensional metal; at $T leq$ 12K from antiferr omagnetic insulator to ferromagnetic, highly anisotropic, three-dimensional metal. % We compare the metallic state to that of the structurally related p-wave superconductor Sr$_{2}$RuO$_{4}$, and discuss the importance of structural distortions, which are expected to couple strongly to pressure.
Ionic liquid gating has become a popular tool for tuning the charge carrier densities of complex oxides. Among these the band insulator SrTiO$_3$ is one of the most extensively studied materials. While experiments have succeeded in inducing (super)co nductivity, the process by which ionic liquid gating turns this insulator into a conductor is still under scrutiny. Recent experiments have suggested an electrochemical rather than electrostatic origin of the induced charge carriers. Here, we report experiments probing the time evolution of conduction of SrTiO$_3$ near the glass transition temperature of the ionic liquid. By cooling down to temperatures near the glass transition of the ionic liquid the process develops slowly and can be seen to evolve in time. The experiments reveal a process characterized by waiting times that can be as long as several minutes preceding a sudden appearance of conduction. For the conditions applied in our experiments we find a consistent interpretation in terms of an electrostatic mechanism for the formation of a conducting path at the surface of SrTiO$_3$. The mechanism by which the conducting surface channel develops relies on a nearly homogeneous lowering of the surface potential until the conduction band edge of SrTiO$_3$ reaches the Fermi level of the electrodes.
We study equilibrium and nonequilibrium properties of electron-phonon systems described by the Hubbard-Holstein model using the dynamical mean-field theory. In equilibrium, we benchmark the results for impurity solvers based on the one-crossing appro ximation and slave-rotor approximation against non-perturbative numerical renormalization group reference data. We also examine how well the low energy properties of the electron-boson coupled systems can be reproduced by an effective static electron-electron interaction. The one-crossing and slave-rotor approximations are then used to simulate insulator-to-metal transitions induced by a sudden switch-on of the electron-phonon interaction. The slave-rotor results suggest the existence of a critical electron-phonon coupling above which the system is transiently trapped in a non-thermal metallic state with coherent quasiparticles. The same quench protocol in the one-crossing approximation results in a bad metallic state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا