ﻻ يوجد ملخص باللغة العربية
The influence of random pinning on the vortex dynamics in a periodic square potential under an external drive is investigated. Using theoretical approach and numerical experiments, we found several dynamical phases of vortex motion that are different from the ones for a regular pinning potential. Vortex transfer is controlled by kinks and antikinks, which either preexist in the system or appear spontaneously in pairs and then propagate in groups. When kinks and antikinks collide, they annihilate.
We study theoretically the simultaneous effect of a regular and a random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by
The $AC$ magnetic penetration depth $lambda (T,H,j)$ was measured in presence of a macroscopic $DC$ (Bean) supercurrent, $j$. In single crystal BSCCO below approximately 28 K, $lambda (T,H,j)$ exhibits thermal hysteresis. The irreversibility arises f
The elementary vortex pinning potential is studied in a chiral p-wave superconductor with a pairing d=z(k_x + i k_y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and numerical results are presented to sh
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide
By the density functional theory for crystallization, it is shown that for vortex lines in an underlying layered structure a smectic phase with period m=2 can be stabilized by strong layer pinning. The freezing of vortex liquid is then two-step, a se