ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution microwave frequency dissemination on an 86-km urban optical link

126   0   0.0 ( 0 )
 نشر من قبل Giorgio Santarelli
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first demonstration of a long-distance ultra stable frequency dissemination in the microwave range. A 9.15 GHz signal is transferred through a 86-km urban optical link with a fractional frequency stability of 1.3x10-15 at 1 s integration time and below 10-18 at one day. The optical link phase noise compensation is performed with a round-trip method. To achieve such a result we implement light polarisation scrambling and dispersion compensation. This link outperforms all the previous radiofrequency links and compares well with recently demonstrated full optical links.

قيم البحث

اقرأ أيضاً

143 - G. Grosche , O. Terra , K. Predehl 2009
We demonstrate the long-distance transmission of an ultra-stable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146 km long underground fiber link with a fractional instability of 3*10^{-15} at 1 s, which is close to the theoretical limit for our transfer experiment. The relative uncertainty for the transfer is below 1*10^{-19} after 30 000 seconds. Tests with a very short fiber show that noise in our stabilization system contributes fluctuations which are two orders of magnitude lower, namely 3*10^{-17} at 1 s, reaching 10^{-20} after 4000 s.
To significantly improve the frequency references used in radio-astronomy and precision measurements in atomic physics, we provide frequency dissemination through a 642 km coherent optical fiber link, that will be also part of a forthcoming European network of optical links. We obtained a resolution of 3e-19 at 1000 s on the frequency transfer, and an accuracy of 5e-19. The ultimate link performance has been evaluated by doubling the link to 1284 km, demonstrating a new characterization technique based on the double round-trip on a single fiber. The arming of a second fiber is avoided: this is beneficial to long hauls realizations in view of a continental fiber network for frequency and time metrology. The data analysis is based on the Allan deviation; its expression is theoretically derived for the observed noise power spectrum, which is seldom found in the literature.
In long-haul optical continuous-wave frequency transfer via fiber, remote bidirectional Er$^+$-doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement we find an instability of the frequency transfer (Allan deviation of $Lambda$-weighted data with 1 s gate time) of around $1times10^{-19}$ and less for averaging times longer than 3000 s. The modified Allan deviation reaches $3times10^{-19}$ at an averaging time of 100 s, corresponding to the current noise floor at this averaging time. For averaging times longer than 1000 s the modified Allan deviation is in the $10^{-20}$ range. A conservative value of the overall accuracy is $1times10^{-19}$.
We have explored the performance of two dark fibers of a commercial telecommunication fiber link for a remote comparison of optical clocks. The two fibers, linking the Leibniz University of Hanover (LUH) with the Physi-kalisch-Technische Bundesanstal t (PTB) in Braunschweig, are connected in Hanover to form a total fiber length of 146 km. At PTB the performance of an optical frequency standard operating at 456 THz was imprinted to a cw trans-fer laser at 194 THz, and its frequency was transmitted over the fiber. In order to detect and compensate phase noise related to the optical fiber link we have built a low-noise optical fiber interferometer and investigated noise sources that affect the overall performance of the optical link. The frequency stability at the remote end has been measured using the clock laser of PTBs Yb+ frequency standard operating at 344 THz. We show that the frequency of a frequency-stabilized fiber laser can be transmitted over a total fiber length of 146 km with a relative frequency uncertainty below 1E-19, and short term frequency instability given by the fractional Allan deviation of sy(t)=3.3E-15/(t/s).
We report on a fully bi-directional 680~km fiber link connecting two cities for which the equipment, the set up and the characterization are managed for the first time by an industrial consortium. The link uses an active telecommunication fiber netwo rk with parallel data traffic and is equipped with three repeater laser stations and four remote double bi-directional Erbium-doped fiber amplifiers. We report a short term stability at 1~s integration time of $5.4times 10^{-16}$ in 0.5~Hz bandwidth and a long term stability of $1.7times10^{-20}$ at 65,000 s of integration time. The accuracy of the frequency transfer is evaluated as $3times 10^{-20}$. No shift is observed within the statistical uncertainty. We show a continuous operation over 5 days with an uptime of 99.93$%$. This performance is comparable with the state of the art coherent links established between National Metrology Institutes in Europe. It is a first step in the construction of an optical fiber network for metrology in France, which will give access to an ultra-high performance frequency standard to a wide community of scientific users.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا