ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-spectral and polarization-selective surface-plasmon resonant mid-infrared detector

171   0   0.0 ( 0 )
 نشر من قبل Jessie Rosenberg
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a multi-spectral polarization sensitive mid-infrared dots-in-a-well (DWELL) photodetector utilizing surface-plasmonic resonant elements, with tailorable frequency response and polarization selectivity. The resonant responsivity of the surface-plasmon detector shows an enhancement of up to 5 times that of an unpatterned control detector. As the plasmonic resonator involves only surface patterning of the top metal contact, this method is independent of light-absorbing material and can easily be integrated with current focal plane array processing for imaging applications.



قيم البحث

اقرأ أيضاً

We describe an effective resonant interaction between two localized wave modes of different nature: a plasmon-polariton at a metal surface and a self-focusing beam (spatial soliton) in a non-linear dielectric medium. Propagating in the same direction , they represent an exotic coupled-waveguide system, where the resonant interaction is controlled by the soliton amplitude. This non-linear system manifests hybridized plasmon-soliton eigenmodes, mutual conversion, and non-adiabatic switching, which offer exciting opportunities for manipulation of plasmons via spatial solitons.
We exploited graphene nanoribbons based meta-surface to realize coherent perfect absorption (CPA) in the mid-infrared regime. It was shown that quasi-CPA frequencies, at which CPA can be demonstrated with proper phase modulations, exist for the graph ene meta-surface with strong resonant behaviors. The CPA can be tuned substantially by merging the geometric design of the meta-surface and the electrical tunability of graphene. Furthermore, we found that the graphene nanoribbon meta-surface based CPA is realizable with experimental graphene data. The findings of CPA with graphene meta-surface can be generalized for potential applications in optical detections and signal processing with two-dimensional optoelectronic materials.
We propose a new type of reflective polarizer based on polarization-dependent coupling to surface-plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with effic iency of up to 95% for the desired polarization (numbers from a calculation), and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 um, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.
We experimentally resolve the dispersion of multiple vibro-polariton modes issued from the strong coupling of different vibrational bands of the methylene group (CH2) in a 2.56$mu$m thick polyethylene film with the confined modes of a mid-infrared Fa bry-Perot micro-cavity. We measure a Rabi frequency of 111 cm$^{-1}$ for the stretching doublet around 2950 cm$^{-1}$ and a Rabi frequency of 29 cm$^{-1}$ for the scissoring doublet around 1460 cm$^{-1}$. This simple experimental approach offers the possibility to accurately fit the measured molecular film dielectric function. We show that the polariton dispersion and Rabi splitting can be precisely predicted from numerical simulations, offering a valuable tool for the design of strongly coupled system and the development of novel molecular films with crystalline organization.
In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-in frared region. The PM fiber was drawn using the casting method from As38Se62 glass which features a transmission window from 2 to 10 $mu m$ and a high nonlinear index of 1.13.10$^{-17}$m$^{2}$W$^{-1}$. It has a zero-dispersion wavelength around 4.5 $mu m$ and, at this wavelength, a large birefringence of 6.10$^{-4}$ and consequently strong polarization maintaining properties are expected. Using this fiber, we experimentally demonstrate supercontinuum generation spanning from 3.1-6.02 $mu m$ and 3.33-5.78 $mu m$ using femtosecond pumping at 4 $mu m$ and 4.53 $mu m$, respectively. We further investigate the supercontinuum bandwidth versus the input pump polarization angle and we show very good agreement with numerical simulations of the two-polarization model based on two coupled generalized nonlinear Schrodinger equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا