ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Plasmon-Soliton Interaction

71   0   0.0 ( 0 )
 نشر من قبل Konstantin Bliokh
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an effective resonant interaction between two localized wave modes of different nature: a plasmon-polariton at a metal surface and a self-focusing beam (spatial soliton) in a non-linear dielectric medium. Propagating in the same direction, they represent an exotic coupled-waveguide system, where the resonant interaction is controlled by the soliton amplitude. This non-linear system manifests hybridized plasmon-soliton eigenmodes, mutual conversion, and non-adiabatic switching, which offer exciting opportunities for manipulation of plasmons via spatial solitons.

قيم البحث

اقرأ أيضاً

We demonstrate that soliton-plasmon bound states appear naturally as propagating eigenmodes of nonlinear Maxwells equations for a metal/dielectric/Kerr interface. By means of a variational method, we give an explicit and simplified expression for the full-vector nonlinear operator of the system. Soliplasmon states (propagating surface soliton-plasmon modes) can be then analytically calculated as eigenmodes of this non-selfadjoint operator. The theoretical treatment of the system predicts the key features of the stationary solutions and gives physical insight to understand the inherent stability and dynamics observed by means of finite element numerical modeling of the time independent nonlinear Maxwell equations. Our results contribute with a new theory for the development of power-tunable photonic nanocircuits based on nonlinear plasmonic waveguides.
Nonlinear properties of a multi-layer stack of graphene sheets are studied. It is predicted that such a structure may support dissipative plasmon-solitons generated and supported by an external laser radiation. Novel nonlinear equations describing sp atial dynamics of the nonlinear plasmons driven by a plane wave in the Otto configuration are derived and the existence of single and multi-hump dissipative solitons in the graphene structure is predicted.
We apply terahertz (THz) near-field streaking in a nanofocusing geometry to investigate plasmon polariton propagation on the shaft of a conical nanotip. By evaluating the delay between a streaking spectrogram for plasmon-induced photoemission with a measurement for direct apex excitation, we obtain an average plasmon group velocity, which is in agreement with numerical simulations. Combining plasmon-induced photoemission with THz near-field streaking facilitates extensive control over localized photoelectron sources for time-resolved imaging and diffraction.
132 - D. Y. Tang , B. Zhao , L. M. Zhao 2009
We have experimentally investigated the soliton interaction in a passively mode-locked fiber ring laser and revealed the existence of three types of strong soliton interaction: a global type of soliton interaction caused by the existence of unstable CW components; a local type of soliton interaction mediated through the radiative dispersive waves; and the direct soliton interaction. We found that the appearance of the various soliton operation modes observed in the passively mode locked fiber soliton lasers are the direct consequences of these three types of soliton interaction. The soliton interaction in the laser is further numerically simulated based on a pulse tracing technique. The numerical simulations confirmed the existence of the dispersive wave mediated soliton interaction and the direct soliton interaction. Furthermore, it was shown that the resonant dispersive waves mediated soliton interaction in the laser always has the consequence of causing random irregular relative soliton movement, and the experimentally observed states of bound solitons are caused by the direct soliton interaction. In particular, as the solitons generated in the laser could have a profile with long tails, the direct soliton interaction could extend to a soliton separation that is larger than 5 times of the soliton pulse width.
Vibrational ultrastrong coupling (USC), where the light-matter coupling strength is comparable to the vibrational frequency of molecules, presents new opportunities to probe the interactions of molecules with zero-point fluctuations, harness cavity-e nhanced chemical reactions, and develop novel devices in the mid-infrared regime. Here we use epsilon-near-zero nanocavities filled with a model polar medium (SiO$_2$) to demonstrate USC between phonons and gap plasmons. We present classical and quantum mechanical models to quantitatively describe the observed plasmon-phonon USC phenomena and demonstrate a splitting of up to 50% of the resonant frequency. Our wafer-scale nanocavity platform will enable a broad range of vibrational transitions to be harnessed for USC applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا