ﻻ يوجد ملخص باللغة العربية
In this paper we propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation. Keywords: Human time-dependent biomechanics, configuration bundle, jet spaces, Ricci flow
In this paper we present the time-dependent generalization of an ordinary autonomous human musculo-skeletal biomechanics. We start with the configuration manifold of human body, given as a set of its all active degrees of freedom (DOF). This is a Rie
We propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds de
In this paper we propose the time & fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics
In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomech
We introduce a model for the global optimization problem of nectar harvesting by flower visitors, e.g., nectar-feeding bats, as a generalization of the (multiple) traveling-salesperson problem (TSP). The model includes multiple independent animals an