ﻻ يوجد ملخص باللغة العربية
In this paper we present the time-dependent generalization of an ordinary autonomous human musculo-skeletal biomechanics. We start with the configuration manifold of human body, given as a set of its all active degrees of freedom (DOF). This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. On this extended configuration space we develop time-dependent biomechanical Lagrangian dynamics, using derived jet spaces of velocities and accelerations, as well as the underlying geometric evolution of the mass-inertia matrix. Keywords: Human time-dependent biomechanics, configuration manifold, jet spaces, geometric evolution
In this paper we propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of je
In this paper we propose the time & fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics
We propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds de
In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomech
L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, w