ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Dependent Lagrangian Biomechanics

98   0   0.0 ( 0 )
 نشر من قبل Tijana Ivancevic
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the time-dependent generalization of an ordinary autonomous human musculo-skeletal biomechanics. We start with the configuration manifold of human body, given as a set of its all active degrees of freedom (DOF). This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. On this extended configuration space we develop time-dependent biomechanical Lagrangian dynamics, using derived jet spaces of velocities and accelerations, as well as the underlying geometric evolution of the mass-inertia matrix. Keywords: Human time-dependent biomechanics, configuration manifold, jet spaces, geometric evolution



قيم البحث

اقرأ أيضاً

In this paper we propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of je t manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation. Keywords: Human time-dependent biomechanics, configuration bundle, jet spaces, Ricci flow
105 - Tijana T. Ivancevic 2009
In this paper we propose the time & fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics . Then we extend it using a powerful geometrical machinery consisting of fibre bundles, jet manifolds, polysymplectic geometry and Hamiltonian connections. In this way we derive time-dependent dissipative Hamiltonian equations and the fitness evolution equation for the general time & fitness-dependent human biomechanical system. Keywords: Human biomechanics, configuration bundle, Hamiltonian connections, jet manifolds, time & fitness-dependent dynamics
We propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds de rived from the extended musculo-skeletal configuration manifold. The corresponding Riemannian geometrical evolution follows the Ricci flow diffusion. In particular, we show that the exponential-like decay of total biomechanical energy (due to exhaustion of biochemical resources) is closely related to the Ricci flow on the biomechanical configuration manifold. Keywords: Time-dependent biomechanics, extended configuration manifold, configuration bundle, jet manifolds, Ricci flow diffusion
In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomech anics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles and jet manifolds associated to the biomechanical configuration manifold. We derive time-dependent, dissipative, Hamiltonian equations and the fitness evolution equation for the general time-dependent human biomechanical system. Keywords: Human biomechanics, covariant force law, configuration manifold, jet manifolds, time-dependent Hamiltonian dynamics
167 - Yao Chen , Weihua Deng 2020
L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, w e establish a Langevin system coupled with a subordinator to describe the L{e}vy walk in the time-dependent periodic force field. The effects of external force are detected and carefully analyzed, including nonzero first moment (even though the force is periodic), adding an additional dispersion on the particle position, the consistent influence on the ensemble- and time-averaged mean-squared displacement, etc. Besides, the generalized Klein-Kramers equation is obtained, not only for the time-dependent force but also for space-dependent one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا