ﻻ يوجد ملخص باللغة العربية
Obscured or narrow-line active galaxies offer an unobstructed view of the quasar environment in the presence of a luminous and vigorously accreting black hole. We exploit the large new sample of optically selected luminous narrow-line active galaxies from the Sloan Digital Sky Survey at redshifts 0.1 < z < 0.45, in conjunction with follow-up observations with the Low Dispersion Survey Spectrograph (LDSS3) at Magellan, to study the distributions of black hole mass and host galaxy properties in these extreme objects. We find a narrow range in black hole mass (<log M_BH/M_sun> = 8.0 +/- 0.7) and Eddington ratio (<log L/L_Edd> = -0.7 +/- 0.7) for the sample as a whole, surprisingly similar to comparable broad-line systems. In contrast, we infer a wide range in star formation properties and host morphologies for the sample, from disk-dominated to elliptical galaxies. Nearly one-quarter have highly disturbed morphologies indicative of ongoing mergers. Unlike the black holes, which are apparently experiencing significant growth, the galaxies appear to have formed the bulk of their stars at a previous epoch. On the other hand, it is clear from the lack of correlation between gaseous and stellar velocity dispersions in these systems that the host galaxy interstellar medium is far from being in virial equilibrium with the stars. While our findings cast strong doubt on the reliability of substituting gas for stellar dispersions in high luminosity active galaxies, they do provide direct evidence that luminous accreting black holes influence their surroundings on a galaxy-wide scale.
We summarize what large surveys of the contemporary universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies and their central supermassive black holes. We present a picture in whi
The population of massive black holes (MBHs) in dwarf galaxies is elusive, but fundamentally important to understand the coevolution of black holes with their hosts and the formation of the first collapsed objects in the Universe. While some progress
Massive black holes (BHs) are at once exotic and yet ubiquitous, residing in the centers of massive galaxies in the local Universe. Recent years have seen remarkable advances in our understanding of how these BHs form and grow over cosmic time, durin
Nearby galaxy surveys have long classified X-ray binaries (XRBs) by the mass category of their donor stars (high-mass and low-mass). The NuSTAR observatory, which provides imaging data at E $>10$ keV, has enabled the classification of extragalactic X
It is well established that a dominant phase in the growth of massive galaxies occurred at high redshift and was heavily obscured by gas and dust. Many studies have explored the stellar growth of massive galaxies but few have combined these constrain