ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternating group and multivariate exponential functions

99   0   0.0 ( 0 )
 نشر من قبل Jiri Patera Prof.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define and study multivariate exponential functions, symmetric with respect to the alternating group A_n, which is a subgroup of the permutation (symmetric) group S_n. These functions are connected with multivariate exponential functions, determined as the determinants of matrices whose entries are exponential functions of one variable. Our functions are eigenfunctions of the Laplace operator. By means of alternating multivariate exponential functions three types of Fourier transforms are constructed: expansions into corresponding Fourier series, integral Fourier transforms, and multivariate finite Fourier transforms. Alternating multivariate exponential functions are used as a kernel in all these Fourier transforms. Eigenfunctions of the integral Fourier transforms are obtained.


قيم البحث

اقرأ أيضاً

Consider a function $F(X,Y)$ of pairs of positive matrices with values in the positive matrices such that whenever $X$ and $Y$ commute $F(X,Y)= X^pY^q.$ Our first main result gives conditions on $F$ such that ${rm Tr}[ X log (F(Z,Y))] leq {rm Tr}[X(p log X + q log Y)]$ for all $X,Y,Z$ such that ${rm Tr} Z = {rm Tr} X$. (Note that $Z$ is absent from the right side of the inequality.) We give several examples of functions $F$ to which the theorem applies. Our theorem allows us to give simple proofs of the well known logarithmic inequalities of Hiai and Petz and several new generalizations of them which involve three variables $X,Y,Z$ instead of just $X,Y$ alone. The investigation of these logarithmic inequalities is closely connected with three quantum relative entropy functionals: The standard Umegaki quantum relative entropy $D(X||Y) = {rm Tr} [X(log X-log Y])$, and two others, the Donald relative entropy $D_D(X||Y)$, and the Belavkin-Stasewski relative entropy $D_{BS}(X||Y)$. They are known to satisfy $D_D(X||Y) leq D(X||Y)leq D_{BS}(X||Y)$. We prove that the Donald relative entropy provides the sharp upper bound, independent of $Z$, on ${rm Tr}[ X log (F(Z,Y))]$ in a number of cases in which $(Z,Y)$ is homogeneous of degree $1$ in $Z$ and $-1$ in $Y$. We also investigate the Legendre transforms in $X$ of $D_D(X||Y)$ and $D_{BS}(X||Y)$, and show how our results for these lead to new refinements of the Golden-Thompson inequality.
The properties of the four families of special functions of three real variables, called here C-, S-, S^s- and S^l-functions, are studied. The S^s- and S^l-functions are considered in all details required for their exploitation in Fourier expansions of digital data, sampled on finite fragment of lattices of any density and of the 3D symmetry imposed by the weight lattices of B_3 and C_3 simple Lie algebras/groups. The continuous interpolations, which are induced by the discrete expansions, are exemplified and compared for some model functions.
111 - Linyu Peng , Zhenning Zhang 2019
This paper mainly contributes to a classification of statistical Einstein manifolds, namely statistical manifolds at the same time are Einstein manifolds. A statistical manifold is a Riemannian manifold, each of whose points is a probability distribu tion. With the Fisher information metric as a Riemannian metric, information geometry was developed to understand the intrinsic properties of statistical models, which play important roles in statistical inference, etc. Among all these models, exponential families is one of the most important kinds, whose geometric structures are fully determined by their potential functions. To classify statistical Einstein manifolds, we derive partial differential equations for potential functions of exponential families; special solutions of these equations are obtained through the ansatz method as well as group-invariant solutions via reductions using Lie point symmetries.
We provide a set of diagonals of simple rational functions of three and four variables that are squares of Heun functions. These Heun functions obtained through creative telescoping, turn out to be either pullbacked $_2F_1$ hypergeometric functions a nd in fact classical modular forms. We also obtain Heun functions that are Shimura curves as solutions of telescopers of rational functions.
We describe solutions of the matrix equation $exp(z(A-I_n))=A$, where $z in {mathbb C}$. Applications in quantum computing are given. Both normal and nonnormal matrices are studied. For normal matrices, the Lambert W-function plays a central role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا