ﻻ يوجد ملخص باللغة العربية
We present an experimental realization of a low-noise, phase-insensitive optical amplifier using a four-wave mixing interaction in hot Rb vapor. Performance near the quantum limit for a range of amplifier gains, including near unity, can be achieved. Such low-noise amplifiers are essential for so-called quantum cloning machines and are useful in quantum information protocols. We demonstrate that amplification and ``cloning of one half of a two-mode squeezed state is possible while preserving entanglement.
In this paper we study the protocol implementation and property analysis for several practical quantum secret sharing (QSS) schemes with continuous variable graph state (CVGS). For each QSS scheme, an implementation protocol is designed according to
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photon and superposition of coherent states, from input single and two photon Fock states r
We propose a procedure for tomographic characterization of continuous variable quantum operations which employs homodyne detection and single-mode squeezed probe states with a fixed degree of squeezing and anti-squeezing and a variable displacement a
The value of residual phase noise, after phase compensation, is one of the key limitations of performance improvement for continuous-variable quantum key distribution using a local local oscillator (LLO CV-QKD) system, since it is the major excess no
We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in thes