ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic state transformations of continuous variable resources

82   0   0.0 ( 0 )
 نشر من قبل Ludovico Lami
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in these settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems. We consider three applications, to the resource theories of (I) optical nonclassicality, (II) entanglement, and (III) quantum thermodynamics. In cases (II) and (III), the employed monotones are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For case (I), we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous and strongly superadditive. Our technique then yields computable upper bounds on asymptotic transformation rates including those achievable under linear optical elements. We also prove a number of results which ensure the measured relative entropy of nonclassicality to be bounded on any physically meaningful state, and to be easily computable for some class of states of interest, e.g., Fock diagonal states. We conclude by applying our findings to the problem of cat state manipulation and noisy Fock state purification.



قيم البحث

اقرأ أيضاً

116 - Bartosz Regula 2021
The difficulty in manipulating quantum resources deterministically often necessitates the use of probabilistic protocols, but the characterization of their capabilities and limitations has been lacking. Here, we develop two general approaches to this problem. First, we introduce a new resource monotone based on the Hilbert projective metric and we show that it obeys a very strong type of monotonicity: it can rule out all transformations, probabilistic or deterministic, between states in any quantum resource theory. This allows us to place fundamental limitations on state transformations and restrict the advantages that probabilistic protocols can provide over deterministic ones, significantly strengthening previous findings and extending recent no-go theorems. We apply our results to obtain a substantial improvement in lower bounds for the errors and overheads of probabilistic distillation protocols, directly applicable to tasks such as entanglement or magic state distillation, and computable through convex optimization. In broad classes of resources, we show that no better restrictions on probabilistic protocols are possible -- our monotone can provide a necessary and sufficient condition for probabilistic resource transformations, thus allowing us to quantify exactly the highest fidelity achievable in resource distillation tasks by means of any probabilistic manipulation protocol. Complementing this approach, we introduce a general method for bounding achievable probabilities in resource transformations through a family of convex optimization problems. We show it to tightly characterize single-shot probabilistic distillation in broad types of resource theories, allowing an exact analysis of the trade-offs between the probabilities and errors in distilling maximally resourceful states.
A combination of a finite number of linear independent states forms superposition in a way that cannot be conceived classically. Here, using the tools of resource theory of superposition, we give the conditions for a class of superposition state tran sformations. These conditions strictly depend on the scalar products of the basis states and reduce to the well-known majorization condition for quantum coherence in the limit of orthonormal basis. To further superposition-free transformations of $d$-dimensional systems, we provide superposition-free operators for a deterministic transformation of superposition states. The linear independence of a finite number of basis states requires a relation between the scalar products of these states. With this information in hand, we determine the maximal superposition states which are valid over a certain range of scalar products. Notably, we show that, for $dgeq3$, scalar products of the pure superposition-free states have a greater place in seeking maximally resourceful states. Various explicit examples illustrate our findings.
The present paper is devoted to investigation of the classical capacity of infinite-dimensional quantum measurement channels. A number of usable conditions are introduced that enable us to apply previously obtained general results to specific models, in particular, to the multi-mode bosonic Gaussian measurement channels. An explicit formula for the classical capacity of the Gaussian measurement channel is obtained in this paper without assuming the global gauge symmetry, solely under certain threshold condition. The result is illustrated by the capacity computation for one-mode squeezed-noise heterodyne measurement channel.
The diverse range of resources which underlie the utility of quantum states in practical tasks motivates the development of universally applicable methods to measure and compare resources of different types. However, many of such approaches were hith erto limited to the finite-dimensional setting or were not connected with operational tasks. We overcome this by introducing a general method of quantifying resources for continuous-variable quantum systems based on the robustness measure, applicable to a plethora of physically relevant resources such as optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. We demonstrate in particular that the measure has a direct operational interpretation as the advantage enabled by a given state in a class of channel discrimination tasks. We show that the robustness constitutes a well-behaved, bona fide resource quantifier in any convex resource theory, contrary to a related negativity-based measure known as the standard robustness. Furthermore, we show the robustness to be directly observable -- it can be computed as the expectation value of a single witness operator -- and establish general methods for evaluating the measure. Explicitly applying our results to the relevant resources, we demonstrate the exact computability of the robustness for several classes of states.
117 - Ludovico Lami 2021
In an abstract sense, quantum data hiding is the manifestation of the fact that two classes of quantum measurements can perform very differently in the task of binary quantum state discrimination. We investigate this phenomenon in the context of cont inuous variable quantum systems. First, we look at the celebrated case of data hiding against the set of local operations and classical communication. While previous studies have placed upper bounds on its maximum efficiency in terms of the local dimension and are thus not applicable to continuous variable systems, we tackle this latter case by establishing more general bounds that rely solely on the local mean photon number of the states employed. Along the way, we perform a quantitative analysis of the error introduced by the non-ideal Braunstein--Kimble quantum teleportation protocol, determining how much two-mode squeezing and local detection efficiency is needed in order to teleport an arbitrary local state of known mean energy with a prescribed accuracy. Finally, following a seminal proposal by Winter, we look at data hiding against the set of Gaussian operations and classical computation, providing the first example of a relatively simple scheme that works with a single mode only. The states employed can be generated from a two-mode squeezed vacuum by local photon counting; the larger the squeezing, the higher the efficiency of the scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا