ﻻ يوجد ملخص باللغة العربية
Distinctive patterns are predicted by quenched quark models and unquenched quark models for the lowest SU(3) baryon nonet with spin parity $J^P=1/2^-$. While the quenched quark models predict the lowest $1/2^-$ $Sigma^*$ resonance to be above 1600 MeV, the unquenched quark models predict it to be around $Sigma^*(1385)$ energy. Here we re-examine some old data of the $kp to la$ reaction and find that besides the well established $Sigma^{*}(1385)$ with $J^P=3/2^+$, there is indeed some evidence for the possible existence of a new $Sigma^{*}$ resonance with $J^P=1/2^-$ around the same mass but with broader decay width. Higher statistic data on relevant reactions are needed to clarify the situation.
The unquenched quark models predict the new particle $Sigma^*$ with spin parity $J^P=1/2^-$ and its mass is around the well established $Sigma^*(1385)$ with $J^P=3/2^+$. Here by using the effective Lagrangian approach we study kp reaction at the rang
We study the $bar K p to Y Kbar K pi$ reactions with $bar K = bar K^0, K^-$ and $Y=Sigma^0, Sigma^+, Lambda$, in the region of $Kbar K pi$ invariant masses of $1200-1550$ MeV. The strong coupling of the $f_1(1285)$ resonance to $K^* bar K$ makes the
We study the photoproduction of the $Lambda(1405)$ and $Sigma(1400)$ hyperon resonances, the latter of which is not a well established state. We evaluate the $s$-, $t$- and $u$-channel diagrams in the Born approximation by employing the effective Lag
The reaction pp -> K^+ + (Lambda p) has been measured at T_p = 1.953 GeV and Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. Narrow S = -1 resonances predicted by bag model calculations are no
In this project, we will compute the form factors relevant for $B to K^*(to K pi)ell^+ell^-$ decays. To map the finite-volume matrix elements computed on the lattice to the infinite-volume $B to K pi$ matrix elements, the $K pi$ scattering amplitude