ﻻ يوجد ملخص باللغة العربية
In the near future the energy region above few hundreds of TeV may really be accessible for measurements of the atmospheric muon spectrum by the IceCube array. Therefore one expects that muon flux uncertainties above 50 TeV, related to a poor knowledge of charm production cross sections and insufficiently examined primary spectra and composition, will be diminished. We give predictions for the very high-energy muon spectrum at sea level, obtained with the three hadronic interaction models, taking into account also the muon contribution due to decays of the charmed hadrons.
We present a new one-dimensional calculation of low and intermediate energy atmospheric muon and neutrino fluxes, using up-to-date data on primary cosmic rays and hadronic interactions. The existing agreement between calculated muon fluxes and the da
Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential t
We examine the uncertainty of the calculation of the atmospheric neutrino flux and present a way to reduce it using accurately measured atmospheric muon flux. Considering the difference of the hadronic interaction model and the real one as a variatio
Comparing the signals measured by the surface and underground scintillator detectors of the Yakutsk Extensive Air Shower Array, we place upper limits on the integral flux and the fraction of primary cosmic-ray photons with energies E > 10^18 eV, E >
The ANTARES high energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration.