ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the flux of primary cosmic-ray photons at energies E > 10^18 eV from Yakutsk muon data

195   0   0.0 ( 0 )
 نشر من قبل Grigory Rubtsov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Comparing the signals measured by the surface and underground scintillator detectors of the Yakutsk Extensive Air Shower Array, we place upper limits on the integral flux and the fraction of primary cosmic-ray photons with energies E > 10^18 eV, E > 2*10^18 eV and E > 4*10^18 eV. The large collected statistics of the showers measured by large-area muon detectors provides a sensitivity to photon fractions < 10^-2, thus achieving precision previously unreachable at ultra-high energies.



قيم البحث

اقرأ أيضاً

Results of the search for $sim (10^{16} - 10^{17.5})$ eV primary cosmic-ray photons with the data of the Moscow State University (MSU) Extensive Air Shower (EAS) array are reported. The full-scale reanalysis of the data with modern simulations of the installation does not confirm previous indications of the excess of gamma-ray candidate events. Upper limits on the corresponding gamma-ray flux are presented. The limits are the most stringent published ones at energies $sim 10^{17}$ eV.
We present the results of the search for ultra-high-energy photons with nine years of data from the Telescope Array surface detector. A multivariate classifier is built upon 16 reconstructed parameters of the extensive air shower. These parameters ar e related to the curvature and the width of the shower front, the steepness of the lateral distribution function, and the timing parameters of the waveforms sensitive to the shower muon content. A total number of two photon candidates found in the search is fully compatible with the expected background. The $95%,$CL limits on the diffuse flux of the photons with energies greater than $10^{18.0}$, $10^{18.5}$, $10^{19.0}$, $10^{19.5}$ and $10^{20.0}$ eV are set at the level of $0.067$, $0.012$, $0.0036$, $0.0013$, $0.0013~mbox{km}^{-2}mbox{yr}^{-1}mbox{sr}^{-1}$ correspondingly.
A spectrum of cosmic rays within energy range 10^15 - 3x10^17 eV was derived from the data of the small Cherenkov setup, which is a part of the Yakutsk complex EAS array. In this, work a new series of observation is covered. These observations lasted from 2000 till 2010 and resulted in increased number of registered events within interval 10^16 - 10^18 eV, which in turn made it possible to reproduce cosmic ray spectrum in this energy domain with better precision. A sign of a thin structure is observed in the shape of the spectrum. It could be related to the escape of heavy nuclei from our Galaxy. Cosmic ray mass composition was obtained for the energy region 10^16 - 10^18 eV. A joint analysis of spectrum and mass composition of cosmic rays was performed. Obtained results are considered in the context of theoretical computations that were performed with the use of hypothesis of galactic and meta-galactic origin of cosmic rays.
319 - T. Abu-Zayyad , R. Aida , M. Allen 2013
We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute f lux of primary photons with energies above 10^19, 10^19.5 and 10^20 eV based on the first three years of data taken.
198 - Patrick Younk 2009
The sources of ultra-high energy cosmic rays are not yet known. However, the discovery of anisotropic cosmic rays above 57x10^18 eV by the Pierre Auger Observatory suggests that a direct source detection may soon be possible. The near-future prospect s for such a measurement are heavily dependent on the flux of the brightest source. In this work, we show that the flux of the brightest source above 57x10^18 eV is expected to comprise 10% or more of the total flux if two general conditions are true. The conditions are: 1.) the source objects are associated with galaxies other than the Milky Way and its closest neighbors, and 2.) the cosmic ray particles are protons or heavy nuclei such as iron and the Greisen-Zatsepin-Kuzmin effect is occurring. The Pierre Auger Observatory collects approximately 23 events above 57x10^18 eV per year. Therefore, it is plausible that, over the course of several years, tens of cosmic rays from a single source will be detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا