ﻻ يوجد ملخص باللغة العربية
This paper addresses the challenge of understanding the typical star formation histories of red sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend. We find, however, that this trend flattens or reverses at sigma < 70 km/s. We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the Fundamental Plane (FP), or by the SAURON group. For galaxies with sigma ~ 70 km/s, models with a frosting of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The SSP model is consistent with the FP, and requires a modest amount of dark matter (20-30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was quenched at intermediate ages is also consistent with the observations. We find that the contribution of stellar populations to the tilt of the FP is highly dependent on the assumed star-formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one third is due to dark matter or non-homology.
We combine new data from the main sequence (M_* versus SFR) of star-forming galaxies and galaxy colors (from GALEX to Spitzer) with a flexible stellar population scheme to deduce the mass-to-light ratio (Upsilon_*) of star-forming galaxies from the S
We present the first results from a study designed to test whether, given high-quality spectrophotometry spanning the mid-UV--optical wavelength regime, it is possible to distinguish the metal content (Z) and star-formation history (sfh) of individua
[Abridged] We study the spectral properties of intermediate mass galaxies as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early-types (ellipticals), late-type (disk-dominated) face-o
We study the star formation histories (SFH) and stellar populations of 213 red and 226 blue nearly face-on low surface brightness disk galaxies (LSBGs), which are selected from the main galaxy sample of Sloan Digital Sky Survey (SDSS) Data Release Se
A comparison is carried out among the star formation histories of early-type galaxies (ETG) in fossil groups, clusters and low density environments. Although they show similar evolutionary histories, a significant fraction of the fossils are younger