ترغب بنشر مسار تعليمي؟ اضغط هنا

The star formation histories of red and blue low surface brightness disk galaxies

519   0   0.0 ( 0 )
 نشر من قبل Guohu Zhong
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the star formation histories (SFH) and stellar populations of 213 red and 226 blue nearly face-on low surface brightness disk galaxies (LSBGs), which are selected from the main galaxy sample of Sloan Digital Sky Survey (SDSS) Data Release Seven (DR7). We also want to compare the stellar populations and SFH between the two groups. The sample of both red and blue LSBGs have sufficient signal-to-noise ratio in the spectral continua. We obtain their absorption-line indices (e.g. Mg_2, Hdelta_A), D_n(4000) and stellar masses from the MPA/JHU catalogs to study their stellar populations and SFH. Moreover we fit their optical spectra (stellar absorption lines and continua) by using the spectral synthesis code STARLIGHT on the basis of the templates of Simple Stellar Populations (SSPs). We find that red LSBGs tend to be relatively older, higher metallicity, more massive and have higher surface mass density than blue LSBGs. The D_n(4000)-Hdelta_A plane shows that perhaps red and blue LSBGs have different SFH: blue LSBGs are more likely to be experiencing a sporadic star formation events at the present day, whereas red LSBGs are more likely to form stars continuously over the past 1-2 Gyr. Moreover, the fraction of galaxies that experienced recent sporadic formation events decreases with increasing stellar mass. Furthermore, two sub-samples are defined for both red and blue LSBGs: the sub-sample within the same stellar mass range of 9.5 <= log(M_star/M_odot) <= 10.3, and the surface brightness limiting sub-sample with mu_0(R) <= 20.7 mag arcsec^{-2}. They show consistent results with the total sample in the corresponding relationships, which confirm that our results to compare the blue and red LSBGs are robust.



قيم البحث

اقرأ أيضاً

The faint stellar halos of galaxies contain key information about the oldest stars and the process of galaxy formation. A previous study of stacked SDSS images of disk galaxies has revealed a halo with an abnormally red r-i colour, seemingly inconsis tent with our current understanding of stellar halos. Here, we investigate the statistical properties of the faint envelopes of low surface brightness disk galaxies to look for further support for a red excess. 1510 edge-on low surface brightness galaxies were selected from the SDSS Data Release 5, rescaled to the same apparent size, aligned and stacked. This procedure allows us to reach a surface brightness of mu_g ~ 31 mag arcsec^-2. After a careful assessment of instrumental light scattering effects, we derive median and average radial surface brightness and colour profiles in g,r and i. The sample is then divided into 3 subsamples according to g-r colour. All three samples exhibit a red colour excess in r-i in the thick disk/halo region. The halo colours of the full sample, g-r = 0.60+-0.15 and r-i = 0.80+-0.15, are found to be incompatible with the colours of any normal type of stellar population. The fact that no similar colour anomaly is seen at comparable surface brightness levels along the disk rules out a sky subtraction residual as the source of the extreme colours. A number of possible explanations for these abnormally red halos are discussed. We find that two different scenarios -- dust extinction of extragalactic background light and a stellar population with a very bottom-heavy initial mass function -- appear to be broadly consistent with our observations and with similar red excesses reported in the halos of other types of galaxies.
[Abridged] We study the spectral properties of intermediate mass galaxies as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early-types (ellipticals), late-type (disk-dominated) face-o n spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their SDSS g-r colour and use the spectral fitting code VESPA to calculate time-resolved star-formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star-formation in the last 500 Myr than blue late-type spirals by up to a factor of three, but share similar star-formation histories at earlier times. This decline in recent star-formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star-formation curtailed in the last 500 Myrs. The red late-type spirals are however still forming stars approximately 17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star-formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals. Blue ellipticals show similar star-formation histories as blue spirals (regardless of type), except they have formed less stars in the last 100 Myrs. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies.
We present deep, pointed $^{12}$CO($J=2-1$) observations of three late-type LSB galaxies. The beam-size was small enough that we could probe different environments (HI maximum, HI mininum, star forming region) in these galaxies. No CO was found at an y of the positions observed. We argue that the implied lack of molecular gas is real and not caused by conversion factor effects. The virtual absence of a molecular phase may explain the very low star formation rates in these galaxies.
234 - K. ONeil 2007
Massive low surface brightness galaxies have disk central surface brightnesses at least one magnitude fainter than the night sky, but total magnitudes and masses that show they are among the largest galaxies known. Like all low surface brightness (LS B) galaxies, massive LSB galaxies are often in the midst of star formation yet their stellar light has remained diffuse, raising the question of how star formation is proceeding within these galaxies. We have undertaken a multi-wavelength study to clarify the structural parameters and stellar and gas content of these enigmatic systems. The results of these studies, which include HI, CO, optical, near UV, and far UV images of the galaxies will provide the most in depth study done to date of how, when, and where star formation proceeds within this unique subset of the galaxy population.
400 - G. Martin , S. Kaviraj , C. Laigle 2019
Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (mu ~ 23 mag arcsec^-2). While both theory and small, deep surveys have hinted at a rich po pulation of low-surface-brightness galaxies (LSBGs) fainter than these limits, their formation remains poorly understood. We use Horizon-AGN, a cosmological hydrodynamical simulation to study how LSBGs, and in particular the population of ultra-diffuse galaxies (UDGs; mu > 24.5 mag arcsec^-2), form and evolve over time. For M* > 10^8 MSun, LSBGs contribute 47, 7 and 6 per cent of the local number, mass and luminosity densities respectively (~85/11/10 per cent for M* > 10^7 MSun). Todays LSBGs have similar dark-matter fractions and angular momenta to high-surface-brightness galaxies (HSBGs; mu < 23 mag arcsec^-2), but larger effective radii (x2.5 for UDGs) and lower fractions of dense, star-forming gas (more than x6 less in UDGs than HSBGs). LSBGs originate from the same progenitors as HSBGs at z > 2. However, LSBG progenitors form stars more rapidly at early epochs. The higher resultant rate of supernova-energy injection flattens their gas-density profiles, which, in turn, creates shallower stellar profiles that are more susceptible to tidal processes. After z ~ 1, tidal perturbations broaden LSBG stellar distributions and heat their cold gas, creating the diffuse, largely gas-poor LSBGs seen today. In clusters, ram-pressure stripping provides an additional mechanism that assists in gas removal in LSBG progenitors. Our results offer insights into the formation of a galaxy population that is central to a complete understanding of galaxy evolution, and which will be a key topic of research using new and forthcoming deep-wide surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا