ﻻ يوجد ملخص باللغة العربية
The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While renormalization group and Bethe Anzats solutions have provided detailed information about the thermodynamics of magnetic impurities, they are insufficient to study the effect on the surrounding electrons, i.e., the spatial range of the correlations created by the Kondo effect between the localized magnetic moment and the conduction electrons. The objective of this work is to present a quantitative way of measuring the extension of these correlations by studying their effect directly on the local density of states (LDOS) at arbitrary distances from the impurity. The numerical techniques used, the Embedded Cluster Approximation, the Finite U Slave Bosons, and Numerical Renormalization Group, calculate the Green functions in real space. With this information, one can calculate how the local density of states away from the impurity is modified by its presence, below and above the Kondo temperature, and then estimate the range of the disturbances in the non-interacting Fermi sea due to the Kondo effect, and how it changes with the Kondo temperature $T_{rm K}$. The results obtained agree with results obtained through spin-spin correlations, showing that the LDOS captures the phenomenology of the Kondo cloud as well. To the best of our knowledge, it is the first time that the LDOS is used to estimate the extension of the Kondo cloud.
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction $U$ is either attractive or repulsive. When the spin current is blockaded
The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo
A double quantum dot device, connected to two channels that only see each other through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. By using a two-impurity Anderson model, and parameter values obtained
We calculate the conductance through a single quantum dot coupled to metallic leads, modeled by the spin 1/2 Anderson model. We adopt the finite-U extension of the noncrossing approximation method. Our results are in good agreement with exact numeric
We consider the Kondo effect arising from a hydrogen impurity in graphene. As a first approximation, the strong covalent bond to a carbon atom removes that carbon atom without breaking the $C_{3}$ rotation symmetry, and we only retain the Hubbard int