ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the link between terrestrial climate change and Galactic spiral arm transit

102   0   0.0 ( 0 )
 نشر من قبل Adrian Melott
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We re-examine past suggestions of a close link between terrestrial climate change and the Suns transit of spiral arms in its path through the Milky Way galaxy. These links produced concrete fits, deriving the unknown spiral pattern speed from terrestrial climate correlations. We test these fits against new data on spiral structure based on CO data that does not make simplifying assumptions about symmetry and circular rotation. If we compare the times of these transits to changes in the climate of Earth, not only do the claimed correlations disappear, but also we find that they cannot be resurrected for any reasonable pattern speed.



قيم البحث

اقرأ أيضاً

Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We ext end our analysis to multi-component systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analysis, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.
Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence for multiple distinct velocity components in the cold, dens e molecular gas populating a comparable region at the end of the bar in the nearby galaxy NGC3627. Methods: We assemble a high resolution view of molecular gas kinematics traced by CO(2-1) emission and extract line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as observed in our own Milky Way since gas can pile up at the crossings between the orbit families. The relative motions of the material following these orbits is likely even more important for the build up of high density in the region. The surface densities in NGC3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces.
Over the last decade it has become clear that there is a decoupling between the old stellar disk and young stellar disk in spiral galaxies. This has led to a scheme for classifying galaxies on the basis of their near-infrared morphology. The near-inf rared provides a more physical framework for classifying galaxies as it is both relatively free from extinction and it traces the old stellar population, i.e. the dominant stellar mass distribution. The `dust penetrated class is dependent upon the spiral pitch angle of arms. We have observed 8 galaxies with UFTI on UKIRT in the K-band in order to investigate the theoretical link between disk dynamics and arm morphology, which is suggested both from numerical models and the dust penetrated class. We find that the pitch angle of spiral arms, i, correlates well with the shear rate of rotation curves, $A/omega$ (where A is the first Oort constant and $omega$ is the rotational velocity), over the same radial range.
Understanding the causes and consequences of, and devising countermeasures to, global warming is a profoundly complex problem. Even when researchers narrow down the focus to a publishable investigation, their analysis often contains enough interactin g components to require a network visualization. Networks are thus both necessary and natural elements of climate science. Furthermore, networks form a mathematical foundation for a multitude of computational and analytical techniques. We are only beginning to see the benefits of this connection between the sciences of climate change and networks. In this review, we cover use-cases of networks in the climate-change literature -- what they represent, how they are analyzed, and what insights they bring. We also discuss network data, tools, and problems yet to be explored.
169 - Brian C. Thomas 2016
Recent results have strongly confirmed that multiple supernovae happened at distances ~100 pc consisting of two main events: one at 1.7 to 3.2 million years ago, and the other at 6.5 to 8.7 million years ago. These events are said to be responsible f or excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first cut at the most probable cases, combining photon and cosmic ray effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground due to the penetration of $geq$TeV cosmic rays will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase 20-fold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا