ﻻ يوجد ملخص باللغة العربية
The uncorrelated (``sequential) and correlated (``nonsequential) double ionization of the H2 molecule in strong laser pulses is investigated using the tools of nonlinear dynamics. We focus on the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate these ionization processes. The emerging picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons. Our analysis leads to verifiable predictions of the intensities where qualitative changes in ionization occur. We also show how these findings depend on the internuclear distance.
Both uncorrelated (sequential) and correlated (nonsequential) processes contribute to the double ionization of the helium atom in strong laser pulses. The double ionization probability has a characteristic knee shape as a function of the intensity of
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$
We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability a
We report on the observation of discrete structures in the electron energy distribution for strong field double ionization of Argon at 394 nm. The experimental conditions were chosen in order to ensure a non-sequential ejection of both electrons with
We report on the unambiguous observation of the sub-cycle ionization bursts in sequential strong-field double ionization of H$_2$ and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by