ﻻ يوجد ملخص باللغة العربية
Both uncorrelated (sequential) and correlated (nonsequential) processes contribute to the double ionization of the helium atom in strong laser pulses. The double ionization probability has a characteristic knee shape as a function of the intensity of the pulse. We investigate the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate the ionization processes. The emerging picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons. Our analysis leads to verifiable predictions of the intensities where qualitiative changes in ionization occur, leading to the hallmark knee shape.
The uncorrelated (``sequential) and correlated (``nonsequential) double ionization of the H2 molecule in strong laser pulses is investigated using the tools of nonlinear dynamics. We focus on the phase-space dynamics of this system, specifically by f
It was observed that the spatiotemporal chaos in lattices of coupled chaotic maps was suppressed to a spatiotemporal fixed point when some fraction of the regular coupling connections were replaced by random links. Here we investigate the effects of
A new pathway of strong laser field induced ionization of an atom is identified which is based on recollisions under the tunneling barrier. With an amended strong field approximation, the interference of the direct and the under-the-barrier recollidi
We report on the observation of discrete structures in the electron energy distribution for strong field double ionization of Argon at 394 nm. The experimental conditions were chosen in order to ensure a non-sequential ejection of both electrons with
We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities $10^{14}-10^{16} W/cm^2$ for the laser wavel