ﻻ يوجد ملخص باللغة العربية
We formulate Non-Relativistic Quantum Chromodynamics (NRQCD) on a lattice which is boosted relative to the usual discretization frame. Moving NRQCD (mNRQCD) allows us to treat the momentum for the heavy quark arising from the frame choice exactly. We derive mNRQCD through O(1/m^2,v^4), as accurate as the NRQCD action in present use, both in the continuum and on the lattice with O(a^4) improvements. We have carried out extensive tests of the formalism through calculations of two-point correlators for both heavy-heavy (bottomonium) and heavy-light (B_s) mesons in 2+1 flavor lattice QCD and obtained nonperturbative determinations of energy shift and external momentum renormalization. Comparison to perturbation theory at O(alpha_s) is also made. The results demonstrate the effectiveness of mNRQCD. In particular we show that the decay constants of heavy-light and heavy-heavy mesons can be calculated with small systematic errors up to much larger momenta than with standard NRQCD.
We present a calculation of the heavy quarks self energy in moving NRQCD to one-loop in perturbation theory. Results for the energy shift and external momentum renormalisation are discussed and compared with non-perturbative results. We show that the
We report results on semileptonic $Btopi lbar{ u}$ decay form factors near $q^2_{rm max}$ using NRQCD heavy quark and clover light quark actions and currents improved through $O(alpha a)$. An inconsistency with the soft pion relation $f^0(q^2_{rm max
We calculate, in the continuum limit of quenched lattice QCD, the matrix elements of the heavy-heavy vector current between heavy-light pseudoscalar meson states. We present the form factors for different values of the initial and final meson masses
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on th
We present the results of a lattice QCD calculation of the scalar and vector form factors for the unphysical $B_stoeta_s$ decay, over the full physical range of $q^2$. This is a useful testing ground both for lattice QCD and for our wider understandi