ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the population imbalanced three-component Hubbard chain with attractive interactions. Such a system can be realized experimentally with three different hyperfine states of ultra cold $^6$Li atoms in an optical lattice. We find that there are different phases that compete with each other in this system: A molecular superfluid phase in which the three fermion species pair up to form molecules (trions), a usual pairing phase involving two species with exactly opposite momenta, and a more exotic generalized Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase consisting of three competing pairing tendencies with different non-zero center-of-mass momenta. At large attractive interactions the system exhibits strong tendencies towards collapse and phase separation. Employing the density-matrix-renormalization-group-method (DMRG) to determine the decay exponents of the various correlators we establish the phase diagram of this model for different fillings and interactions. We also discuss the experimentally relevant situation in a trap and report the existence of an additional region where two species are dynamically balanced.
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of $p$-wave pairing between spin polarised fermions immersed i
Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intrica
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations.
It is well known that bosons on an optical lattice undergo a second-order superfluid-insulator transition (SIT) when the lattice potential increases. In this paper we study SIT when fermions coexist with the bosons. We find that the critical properti
We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover between bulk and surface dominated