ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced $p$-wave pairing in Bose-Fermi mixtures

100   0   0.0 ( 0 )
 نشر من قبل Jami Kinnunen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of $p$-wave pairing between spin polarised fermions immersed in a Bose-Einstein condensate. The fermions interact via the exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency/momentum dependence of the resulting induced interaction. We demonstrate that both retardation and self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-fermion interaction strength as well as their masses, and identify the most suitable system for realising a $p$-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using light bosons mixed with heavy fermions.

قيم البحث

اقرأ أيضاً

We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC re spectively, we show that the single particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, these prominent effects can be used to systematically probe the strongly interacting Fermi gas.
We consider two-dimensional weakly-bound heterospecies molecules formed in a Fermi-Bose mixture with attractive Fermi-Bose and repulsive Bose-Bose interactions. Bosonic exchanges lead to an intermolecular attraction, which can be controlled and tuned to a p-wave resonance. Such attractive fermionic molecules can be realized in quasi-two-dimensional ultracold isotopic or heteronuclear mixtures. We show that they are stable with respect to the recombination to deeply-bound molecular states and with respect to the formation of higher-order clusters (trimers, tetramers, etc.)
We investigate single-particle properties of a one-component Fermi gas with a tunable p-wave interaction. Including pairing fluctuations associated with this anisotropic interaction within a $T$-matrix theory, we calculate the single-particle density of states, as well as the spectral weight, above the superfluid transition temperature $T_{rm c}$. Starting from the weak-coupling regime, we show that the so-called pseudogap first develops in these quantities with increasing the interaction strength. However, when the interaction becomes strong to some extent, the pseudogap becomes obscure to eventually disappear in the strong-coupling regime. This non-monotonic interaction dependence is quite different from the case of an s-wave interaction, where the pseudogap simply develops with increasing the interaction strength. The difference between the two cases is shown to originate from the momentum dependence of the p-wave interaction, which vanishes in the low momentum limit. We also identify the pseudogap regime in the phase diagram with respect to the temperature and the p-wave interaction strength. Since the pseudogap is a precursor phenomenon of the superfluid phase transition, our results would be useful for the research toward the realization of p-wave superfluid Fermi gases.
The pairing of fermionic atoms in a mixture of atomic fermion and boson gases at zero temperature is investigated. The attractive interaction between fermions, that can be induced by density fluctuations of the bosonic background, can give rise to a superfluid phase in the Fermi component of the mixture. The atoms of both species are assumed to be in only one internal state, so that the pairing of fermions is effective only in odd-l channels. No assumption about the value of the ratio between the Fermi velocity and the sound velocity in the Bose gas is made in the derivation of the energy gap equation. The gap equation is solved without any particular ansatz for the pairing field or the effective interaction. The p-wave superfluidity is studied in detail. By increasing the strength and/or decreasing the range of the effective interaction a transition of the fermion pairing regime, from the Bardeen-Cooper-Schrieffer state to a system of tightly bound couples can be realized. These composite bosons behave as a weakly-interacting Bose-Einstein condensate.
We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover between bulk and surface dominated regimes -- where scattering occurs throughout the Bose cloud, or solely on the surface. We calculate the damping and frequency shift of the dipole mode in a harmonic trap as a function of the magnetic field controlling an inter-species Feshbach resonance. We find excellent agreement between our stochastic model and the experimental studies of Cs-Li mixtures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا