ترغب بنشر مسار تعليمي؟ اضغط هنا

The blazar S5 0014+813: a real or apparent monster?

99   0   0.0 ( 0 )
 نشر من قبل Gabriele Ghisellini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Ghisellini




اسأل ChatGPT حول البحث

A strong hard X-ray luminosity from a blazar flags the presence of a very powerful jet. If the jet power is in turn related to the mass accretion rate, the most luminous hard X-ray blazars should pinpoint the largest accretion rates, and therefore the largest black hole masses. These ideas are confirmed by the Swift satellite observations of the blazar S5 0014+813, at the redshift z=3.366. Swift detected this source with all its three instruments, from the optical to the hard X-rays. Through the construction of its spectral energy distribution we are confident that its optical-UV emission is thermal in origin. Associating it to the emission of a standard optically thick geometrically thin accretion disk, we find a black hole mass of 40 billion solar masses, radiating at 40% the Eddington value. The derived mass is among the largest ever found. Super-Eddington slim disks or thick disks with the presence of a collimating funnel can in principle reduce the black hole mass estimate, but tends to produce spectra bluer than observed.



قيم البحث

اقرأ أيضاً

79 - C. M. Raiteri 2020
4C 71.07 is a high-redshift blazar whose optical radiation is dominated by quasar-like nuclear emission. We here present the results of a spectroscopic monitoring of the source to study its unbeamed properties. We obtained 24 optical spectra at the N ordic Optical Telescope (NOT) and William Herschel Telescope (WHT) and 3 near-infrared spectra at the Telescopio Nazionale Galileo (TNG). They show no evidence of narrow emission lines. The estimate of the systemic redshift from the H$beta$ and H$alpha$ broad emission lines leads to $z_{rm sys}=2.2130 pm 0.0004$. Notwithstanding the nearly face-on orientation of the accretion disc, the high-ionization emission lines present large broadening as well as noticeable blueshifts, which increase with the ionizing energy of the corresponding species. This is a clear indication of strong ionized outflows. Line broadening and blueshift appear correlated. We applied scaling relationships to estimate the mass of the supermassive black hole from the Balmer and C IV lines, taking into account the prescriptions to correct for outflow. They give $M_{rm BH} sim 2 times 10^9 , M_odot$. We derived an Eddington luminosity $L_{rm Edd} sim 2.5 times 10^{47} rm , erg , s^{-1}$ $sim L_{rm disc}$, and a broad line region luminosity $L_{rm BLR} sim 1.5 times 10^{46} rm , erg , s^{-1}$. The line fluxes do not show significant variability in time. In particular, there is no line reaction to the jet flaring activity detected in 2015 October and November. This implies that the jet gives no contribution to the photoionization of the broad line region in the considered period.
We present early-time optical through infrared photometry of the bright gamma-ray burst GRB 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometri c dataset allows us to solve for the extinction properties of the redshift 3.036 sightline, giving perhaps the most detailed information on the ultraviolet continuum absorption properties of any sightline outside our Local Group to date. The extinction properties are not adequately modeled by any ordinary extinction template (including the average Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud curves), partially because the 2175-Angstrom feature (while present) is weaker by about a factor of two than when seen under similar circumstances locally. However, the spectral energy distribution is exquisitely fitted by the more general Fitzpatrick & Massa (1990) parameterization of Local-Group extinction, putting it in the same family as some peculiar Milky Way extinction curves. After correcting for this (considerable, A_V = 3.3 +/- 0.4 mag) extinction, GRB 080607 is revealed to have been among the most optically luminous events ever observed, comparable to the naked-eye burst GRB 080319B. Its early peak time (t_rest < 6 s) indicates a high initial Lorentz factor (Gamma > 600), while the extreme luminosity may be explained in part by a large circumburst density. Only because of its early high luminosity could the afterglow of GRB 080607 be studied in such detail in spite of the large attenuation and great distance, making this burst an excellent prototype for the understanding of other highly obscured extragalactic objects, and of the class of dark GRBs in particular.
250 - B. Rani 2010
The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/o r the physical parameters of the jet. Meaningful modeling of blazar broadband spectra is required to understand the extreme conditions within the emission region. Not only is the broadband SED crucial, but also information about its variability is needed to understand how the highest states of emission occur and how they differ from the low states. This may help in discriminating between models. Here we present the results of our SED modeling of the blazar S5 0716+714 during various phases of its activity. The SEDs are classified into different bins depending on the optical brightness state of the source.
82 - E. Ros 2019
IceCube has reported a very-high-energy neutrino (IceCube-170922A) in a region containing the blazar TXS 0506+056. Correlated {gamma}-ray activity has led to the first high-probability association of a high-energy neutrino with an extragalactic sourc e. This blazar has been found to be in a radio outburst during the neutrino event. We have performed target-of-opportunity VLBI imaging observations at 43 GHz frequency with the VLBA two and eight months, respectively, after the neutrino event. We produced two images of TXS 0506+056 with angular resolutions of (0.2x1.1) mas and (0.2x0.5) mas, respectively. The source shows a compact, high brightness temperature core (albeit not approaching the equipartition limit) and a bright and originally very collimated inner jet. Beyond about 0.5 mas from the mm-VLBI core, the jet loses this tight collimation and expands rapidly. During the months after the neutrino event associated with this source, the overall flux density is rising. This flux density increase happens solely within the core. The core expands in size with apparent superluminal velocity during these six months so that the brightness temperature drops by a factor of three in spite of the strong flux density increase. The radio jet of TXS 0506+056 shows strong signs of deceleration and/or a spine-sheath structure within the inner 1 mas (corresponding to about 70 pc to 140 pc in deprojected distance) from the mm-VLBI core. This structure is consistent with theoretical models that attribute the neutrino and {gamma}-ray production to interactions of electrons and protons in the highly-relativistic jet spine with external photons originating from a slower-moving jet region. Proton loading due to jet-star interactions in the inner host galaxy is suggested as the possible cause of deceleration
172 - Chris J. Willott 2011
The most distant quasar yet discovered sets constraints on the formation mechanism of black holes. Its light spectrum has tantalizing features that are expected to be observed before the reionization epoch ended.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا