ﻻ يوجد ملخص باللغة العربية
IceCube has reported a very-high-energy neutrino (IceCube-170922A) in a region containing the blazar TXS 0506+056. Correlated {gamma}-ray activity has led to the first high-probability association of a high-energy neutrino with an extragalactic source. This blazar has been found to be in a radio outburst during the neutrino event. We have performed target-of-opportunity VLBI imaging observations at 43 GHz frequency with the VLBA two and eight months, respectively, after the neutrino event. We produced two images of TXS 0506+056 with angular resolutions of (0.2x1.1) mas and (0.2x0.5) mas, respectively. The source shows a compact, high brightness temperature core (albeit not approaching the equipartition limit) and a bright and originally very collimated inner jet. Beyond about 0.5 mas from the mm-VLBI core, the jet loses this tight collimation and expands rapidly. During the months after the neutrino event associated with this source, the overall flux density is rising. This flux density increase happens solely within the core. The core expands in size with apparent superluminal velocity during these six months so that the brightness temperature drops by a factor of three in spite of the strong flux density increase. The radio jet of TXS 0506+056 shows strong signs of deceleration and/or a spine-sheath structure within the inner 1 mas (corresponding to about 70 pc to 140 pc in deprojected distance) from the mm-VLBI core. This structure is consistent with theoretical models that attribute the neutrino and {gamma}-ray production to interactions of electrons and protons in the highly-relativistic jet spine with external photons originating from a slower-moving jet region. Proton loading due to jet-star interactions in the inner host galaxy is suggested as the possible cause of deceleration
The IceCube instrument detected a high-energy cosmic neutrino event on 2017 September 22 (IceCube_170922A, IceCube Collaboration 2018), which the electromagnetic follow-up campaigns associated with the flaring $gamma$-ray blazar TXS 0506$+$056 (e.g.,
TXS 0506+056 is a blazar that has been recently identified as the counterpart of the neutrino event IceCube-170922A. Understanding blazar type of TXS 0506+056 is important to constrain the neutrino emission mechanism, but the blazar nature of TXS 050
The IceCube collaboration reported a $sim 3.5sigma$ excess of $13pm5$ neutrino events in the direction of the blazar TXS 0506+56 during a $sim$6 month period in 2014-2015, as well as the ($sim3sigma$) detection of a high-energy muon neutrino during a
On 2017 September 22 the IceCube neutrino observatory detected a track-like, very-high-energy event (IceCube-170922A) that is spatially associated with TXS 0506+056, a quasar at a redshift of $z=0.3365$. This source is characterized by the increased
We present the dissection in space, time, and energy of the region around the IceCube-170922A neutrino alert. This study is motivated by: (1) the first association between a neutrino alert and a blazar in a flaring state, TXS 0506+056; (2) the eviden