ﻻ يوجد ملخص باللغة العربية
A highly polydisperse granular gas is modeled by a continuous distribution of particle sizes, a, giving rise to a corresponding continuous temperature profile, T(a), which we compute approximately, generalizing previous results for binary or multicomponent mixtures. If the system is driven, it evolves towards a stationary temperature profile, which is discussed for several driving mechanisms in dependence on the variance of the size distribution. For a uniform distribution of sizes, the stationary temperature profile is nonuniform with either hot small particles (constant force driving) or hot large particles (constant velocity or constant energy driving). Polydispersity always gives rise to non-Gaussian velocity distributions. Depending on the driving mechanism the tails can be either overpopulated or underpopulated as compared to the molecular gas. The deviations are mainly due to small particles. In the case of free cooling the decay rate depends continuously on particle size, while all partial temperatures decay according to Haffs law. The analytical results are supported by event driven simulations for a large, but discrete number of species.
The expansion of the velocity distribution function for the homogeneous cooling state (HCS) in a Sonine polynomial series around a Maxwellian is shown to be divergent, though Borel resummable. A convergent expansion for the HCS has been devised and e
We consider a granular gas under the action of gravity, fluidized by a vibrating base. We show that a horizontal temperature gradient, here induced by limiting dissipative lateral walls (DLW), leads always to a granular thermal convection (DLW-TC) th
We report a peculiar dynamic phenomenon in granular gases, chain structures of head-on collisions caused by the boundary heated mechanism form a network in an Airbus micro-gravity experiment and horizontal vibrated one in the laboratory, which differ
A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we pre
An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle clustering, which refers to the tendency of dissipative grains to form transient, loose regions of relatively high