ﻻ يوجد ملخص باللغة العربية
We obtain limit theorems for $Phi(A^p)^{1/p}$ and $(A^psigma B)^{1/p}$ as $ptoinfty$ for positive matrices $A,B$, where $Phi$ is a positive linear map between matrix algebras (in particular, $Phi(A)=KAK^*$) and $sigma$ is an operator mean (in particular, the weighted geometric mean), which are considered as certain reciprocal Lie-Trotter formulas and also a generalization of Katos limit to the supremum $Avee B$ with respect to the spectral order.
We improve the existing Ando-Hiai inequalities for operator means and present new ones for operator perspectives in several ways. We also provide the operator perspective version of the Lie-Trotter formula and consider the extension problem of operat
Let $mathbb{P}$ be the complete metric space consisting of positive invertible operators on an infinite-dimensional Hilbert space with the Thompson metric. We introduce the notion of operator means of probability measures on $mathbb{P}$, in parallel
The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function $phi$ in the form $K_D^phi(H,K)=sum_{i,j}phi(lambda_i,lambda_j)^{-1} Tr P_iHP_jK$ when $sum_ilambda_iP_i$ is the spectral decomposition of the foot po
In this paper, the notion of operator means in the setting of JB-algebras is introduced and their properties are studied. Many identities and inequalities are established, most of them have origins from operators on Hilbert space but they have differ
This article - a part of a multipaper project investigating arithmetic mean ideals - investigates the codimension of commutator spaces [I, B(H)] of operator ideals on a separable Hilbert space, i.e., ``How many traces can an ideal support? We conject