ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial variations of dust abundances across the Large Magellanic Cloud

109   0   0.0 ( 0 )
 نشر من قبل Deborah Paradis
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the data obtained with the Spitzer Space telescope as part of the Surveying the Agents of a Galaxys Evolution (SAGE) legacy survey, we have studied the variations of the dust composition and abundance across the Large Magellanic Cloud (LMC). Such variations are expected, as the explosive events which have lead to the formation of the many HI shells observed should have affected the dust properties. Using a model and comparing with a reference spectral energy distribution from our Galaxy, we deduce the relative abundance variations of small dust grains across the LMC. We examined the infrared color ratios as well as the relative abundances of very small grains (VSGs) and polycyclic aromatic hydrocarbons (PAHs) relative to the big grain (BG) abundance. Results show that each dust component could have different origins or evolution in the interstellar medium (ISM). The VSG abundance traces the star formation activity and could result from shattering of larger grains, whereas the PAH abundance increases around molecular clouds as well as in the stellar bar, where they could have been injected into the ISM during mass loss from old stars.



قيم البحث

اقرأ أيضاً

78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) a nd with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC~1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NG C~1718 to be a fairly metal-rich cluster, with an average [Fe/H] ~ -0.55+/-0.01. The two red giants appear to have primordial O, Na, Mg, and Al abundances, with no convincing signs of a composition difference between the two stars---hence, based on these two stars, NGC~1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC~1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La, and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxys field stars. Similar to the field stars, NGC~1718 is found to be mildly deficient in explosive $alpha$-elements, but moderately to strongly deficient in O, Na, Mg, Al, and Cu, elements which form during hydrostatic burning in massive stars. NGC~1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor AGB stars.
167 - M. Meixner , F. Galliano , S. Hony 2010
The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observat orys PACS and SPIRE photometry cameras, we imaged a 2x8 square degree strip through the LMC, at a position angle of ~22.5 degrees as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 {mu}m and SPIRE 250, 350 and 500 {mu}m. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 {mu}m emission is in excess of the models by 6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (f_PAH) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J=1-0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR = 65(+15,-18) making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 287(+25,-42) that is more consistent with a GDR inferred from extinction.
111 - Alessandro Mazzi 2021
We derive the spatially-resolved star formation history (SFH) for a $96$ deg$^2$ area across the main body of the Large Magellanic Cloud (LMC), using the near-infrared photometry from the VISTA survey of the Magellanic Clouds (VMC). The data and anal yses are characterised by a great degree of homogeneity and a low sensitivity to the interstellar extinction. 756 subregions of size $0.125$ deg$^2$ -- corresponding to projected sizes of about $296times322,mathrm{pc}^{2}$ in the LMC -- are analysed. The resulting SFH maps, with typical resolution of $0.2$--$0.3$ dex in logarithm of age, reveal main features in the LMC disc at different ages: the patchy star formation at recent ages, the concentration of star formation on three spiral arms and on the Bar up to ages of $sim!1.6$ Gyr, and the wider and smoother distribution of older populations. The period of most intense star formation occurred roughly between 4 and 0.5 Gyr ago, at rates of $sim!0.3,mathrm{M}_{odot}mathrm{yr}^{-1}$. We compare young and old star formation rates with the observed numbers of RR Lyrae and Cepheids. We also derive a mean extinction and mean distance for every subregion, and the plane that best describes the spatial distribution of the mean distances. Our results cover an area about 50 per cent larger than the classical SFH maps derived from optical data by Harris & Zaritsky (2009). Main differences with respect to those maps are lower star formation rates at young ages, and a main peak of star formation being identified at ages slightly younger than $1$ Gyr.
We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen HI observations. With the goal of testing the importance of stellar feedback on HI turbulence, we define central and outer SMC reg ions based on the star formation rate (SFR) surface density, as well as the HI integrated intensity. We use the structure function and the Velocity Channel Analysis (VCA) to calculate the power-law index (gamma) for both underlying density and velocity fields in these regions. In all cases, our results show essentially no difference in gamma between the central and outer regions. This suggests that HI turbulent properties are surprisingly homogeneous across the SMC when probed at a resolution of 30 pc. Contrary to recent suggestions from numerical simulations, we do not find a significant change in gamma due to stellar feedback as traced by the SFR surface density. This could be due to the stellar feedback being widespread over the whole of the SMC, but more likely due to a large-scale gravitational driving of turbulence. We show that the lack of difference between central and outer SMC regions can not be explained by the high optical depth HI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا