ترغب بنشر مسار تعليمي؟ اضغط هنا

The image of the coefficient space in the universal deformation space

93   0   0.0 ( 0 )
 نشر من قبل Eugen Hellmann
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Eugen Hellmann




اسأل ChatGPT حول البحث

The coefficient space is a kind of resolution of singularities of the universal flat deformation space for a given Galois representation of some local field. It parameterizes (in some sense) the finite flat models for the Galois representation. The aim of this note is to determine the image of the coefficient space in the universal deformation space.

قيم البحث

اقرأ أيضاً

102 - Wensheng Cao 2017
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n; F)$ equipped with the quotient topology. It is an important problem in hyperbolic geometry to parameterize $mathcal{M}(n,m;F bp^n)$ and study the geometric and topological structures on the associated parameter space. In this paper, by mainly using the rotation-normalized and block-normalized algorithms, we construct the parameter spaces of both $mathcal{M}(n,m; bhq)$ and $mathcal{M}(n,m;bp(V_+))$, respectively.
126 - Alexander Schmitt 2003
We construct the Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves. The Hilbert compactification is the GIT quotient of some open part of an appropriate Hilbert scheme of curves in a Grassmannian. It has all the properties asked for by Teixidor.
We study a 3-dimensional stratum $mathcal{M}_{3,V}$ of the moduli space $mathcal{M}_3$ of curves of genus $3$ parameterizing curves $Y$ that admit a certain action of $V= C_2times C_2$. We determine the possible types of the stable reduction of these curves to characteristic different from $2$. We define invariants for $mathcal{M}_{3,V}$ and characterize the occurrence of each of the reduction types in terms of them. We also calculate the $j$-invariant (resp. the Igusa invariants) of the irreducible components of positive genus of the stable reduction of $Y$ in terms of the invariants.
We study the arc space of the Grassmannian from the point of view of the singularities of Schubert varieties. Our main tool is a decomposition of the arc space of the Grassmannian that resembles the Schubert cell decomposition of the Grassmannian its elf. Just as the combinatorics of Schubert cells is controlled by partitions, the combinatorics in the arc space is controlled by plane partitions (sometimes also called 3d partitions). A combination of a geometric analysis of the pieces in the decomposition and a combinatorial analysis of plane partitions leads to invariants of the singularities. As an application we reduce the computation of log canonical thresholds of pairs involving Schubert varieties to an easy linear programming problem. We also study the Nash problem for Schubert varieties, showing that the Nash map is always bijective in this case.
We consider the Cohen-Macaulay compactification of the space of twisted cubics in projective n-space. This compactification is the fine moduli scheme representing the functor of CM-curves with Hilbert polynomial 3t+1. We show that the moduli scheme o f CM-curves in projective 3-space is isomorphic to the twisted cubic component of the Hilbert scheme. We also describe the compactification for twisted cubics in n-space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا