ترغب بنشر مسار تعليمي؟ اضغط هنا

Valence Force Model for Phonons in Graphene and Carbon Nanotubes

163   0   0.0 ( 0 )
 نشر من قبل Vasili Perebeinos
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many calculations require a simple classical model for the interactions between sp^2-bonded carbon atoms, as in graphene or carbon nanotubes. Here we present a new valence force model to describe these interactions. The calculated phonon spectrum of graphene and the nanotube breathing-mode energy agree well with experimental measurements and with ab initio calculations. The model does not assume an underlying lattice, so it can also be directly applied to distorted structures. The characteristics and limitations of the model are discussed.



قيم البحث

اقرأ أيضاً

We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.
142 - J.-H. Kim , K.-J. Han , N.-J. Kim 2008
Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the p honon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.
We present a detailed study of the vibrational properties of Single Wall Carbon Nanotubes (SWNTs). The phonon dispersions of SWNTs are strongly shaped by the effects of electron-phonon coupling. We analyze the separate contributions of curvature and confinement. Confinement plays a major role in modifying SWNT phonons and is often more relevant than curvature. Due to their one-dimensional character, metallic tubes are expected to undergo Peierls distortions (PD) at T=0K. At finite temperature, PD are no longer present, but phonons with atomic displacements similar to those of the PD are affected by strong Kohn anomalies (KA). We investigate by Density Functional Theory (DFT) KA and PD in metallic SWNTs with diameters up to 3 nm, in the electronic temperature range from 4K to 3000 K. We then derive a set of simple formulas accounting for all the DFT results. Finally, we prove that the static approach, commonly used for the evaluation of phonon frequencies in solids, fails because of the SWNTs reduced dimensionality. The correct description of KA in metallic SWNTs can be obtained only by using a dynamical approach, beyond the adiabatic Born-Oppenheimer approximation, by taking into account non-adiabatic contributions. Dynamic effects induce significant changes in the occurrence and shape of Kohn anomalies. We show that the SWNT Raman G peak can only be interpreted considering the combined dynamic, curvature and confinement effects. We assign the G+ and G- peaks of metallic SWNTs to TO (circumferential) and LO (axial) modes, respectively, the opposite of semiconducting SWNTs.
We present measurements of the $D$ Raman mode in graphene and carbon nanotubes at different laser excitation energies. The Raman mode around 1050 - 1150,cm$^{-1}$ originates from a double-resonant scattering process of longitudinal acoustic (LA) phon ons with defects. We investigate its dependence on laser excitation energy, on the number of graphene layers and on the carbon nanotube diameter. We assign this Raman mode to so-called inner processes with resonant phonons mainly from the $Gamma-K$ high-symmetry direction. The asymmetry of the $D$ mode is explained by additional contributions from phonons next to the $Gamma-K$ line. Our results demonstrate the importance of inner contributions in the double-resonance scattering process and add a fast method to investigate acoustic phonons in graphene and carbon nanotubes by optical spectroscopy.
79 - B.J. LeRoy , S.G. Lemay , J. Kong 2005
The interplay between discrete vibrational and electronic degrees of freedom directly influences the chemical and physical properties of molecular systems. This coupling is typically studied through optical methods such as fluorescence, absorption, a nd Raman spectroscopy. Molecular electronic devices provide new opportunities for exploring vibration-electronic interactions at the single molecule level. For example, electrons injected from a scanning tunneling microscope tip into a metal can excite vibrational excitations of a molecule in the gap between tip and metal. Here we show how current directly injected into a freely suspended individual single-wall carbon nanotube can be used to excite, detect, and control a specific vibrational mode of the molecule. Electrons inelastically tunneling into the nanotube cause a non-equilibrium occupation of the radial breathing mode, leading to both stimulated emission and absorption of phonons by successive electron tunneling events. We exploit this effect to measure a phonon lifetime on the order of 10 nanoseconds, corresponding to a quality factor well over 10000 for this nanomechanical oscillator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا