ﻻ يوجد ملخص باللغة العربية
We extend the quantum-mechanical results of Muller & Saunders (2008) establishing the weak discernibility of an arbitrary number of similar fermions in finite-dimensional Hilbert-spaces in two ways: (a) from fermions to bosons for all finite-dimensional Hilbert-spaces; and (b) from finite-dimensional to infinite-dimensional Hilbert-spaces for all elementary particles. In both cases this is performed using operators whose physical significance is beyond doubt.This confutes the currently dominant view that (A) the quantum-mechanical description of similar particles conflicts with Leibnizs Principle of the Identity of Indiscernibles (PII); and that (B) the only way to save PII is by adopting some pre-Kantian metaphysical notion such as Scotusian haecceittas or Adamsian primitive thisness. We take sides with Muller & Saunders (2008) against this currently dominant view, which has been expounded and defended by, among others, Schrodinger, Margenau, Cortes, Dalla Chiara, Di Francia, Redhead, French, Teller, Butterfield, Mittelstaedt, Giuntini, Castellani, Krause and Huggett.
On the basis of the three fundamental principles of (i) Poincar{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector partic
Classical results and recent developments on the theoretical description of elementary particles with continuous spin are reviewed. At free level, these fields are described by unitary irreducible representations of the isometry group (either Poincar
Mass spectrum of localized states (elementary particles) of single quantum system is studied in the framework of Heisenbergs scheme. Localized states are understood as cyclic representations of a group of fundamental symmetry (Lorentz group) within a
Autler-Townes splitting (ATS) and electromagnetically-induced transparency (EIT) both yield transparency in an absorption profile, but only EIT yields strong transparency for a weak pump field due to Fano interference. Empirically discriminating EIT
The traditional Standard Quantum Mechanics is unable to solve the Spin-Statistics problem, i.e. to justify the utterly important Pauli Exclusion Principle. We show that this is due to the non completeness of the standard theory due to an arguable con