ﻻ يوجد ملخص باللغة العربية
On the basis of the three fundamental principles of (i) Poincar{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector particles, i.e., massive spin-1 particles transforming in the /1/2,1/2) representation space of the Homogeneous Lorentz Group (HLG). We make the point that the first two symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general Lagrangian depending on two free parameters, here denoted by xi and g. The first one defines the electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an additional physical input suited for the implementation of the third principle. As such, one chooses Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the high energy limit. In result, we obtain the universal g=2, and xi=0 values which completely characterize the electromagnetic couplings of the considered elementary vector field at tree level. The nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition of the g=2 value into non-Abelian, g_{na}, and Abelian, g_{a}=2-g_{na}, contributions occurs for non-Abelian fields with the size of g_{na} being determined by the specific non-Abelian group appearing in the theory of interest, be it the Standard Model or any other theory.
A systematic method developed by the authors to evaluate the one-loop electromagnetic self-energies of the low-lying mesons is extended to the calculation of the vector sector including $rho$, $omega$, and $phi$-mesons. The theoretical result of $rho
We extend the quantum-mechanical results of Muller & Saunders (2008) establishing the weak discernibility of an arbitrary number of similar fermions in finite-dimensional Hilbert-spaces in two ways: (a) from fermions to bosons for all finite-dimensio
Classical results and recent developments on the theoretical description of elementary particles with continuous spin are reviewed. At free level, these fields are described by unitary irreducible representations of the isometry group (either Poincar
We study the pseudoscalar, vector and axial current correlation functions in SU(2)-NJL model with scalar and vector couplings. The correlation functions are evaluated in leading order in number of colors $N_c$. As it is expected in the pseudoscalar c
We examine a new class of CPT-even and dimension-five nonminimal interactions between fermions and photons, deprived of higher-order derivatives, yielding electric dipole moment and magnetic dipole moment in the context of the Dirac equation. These c