ترغب بنشر مسار تعليمي؟ اضغط هنا

Renaissance of the ~1 TeV Fixed-Target Program

37   0   0.0 ( 0 )
 نشر من قبل Joshua Spitz
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This document describes the physics potential of a new fixed-target program based on a ~1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

قيم البحث

اقرأ أيضاً

By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments ever and to study $pp$, $p$d and $p$A collisions at $sqrt{s_{NN}}= 115$ GeV and Pb$p$ and PbA collisions at $sqrt{s_{NN}}=72$ GeV with high precision and modern detection techniques. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-$x$, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we will review the technical solutions to obtain a high-luminosity fixed-target experiment at the LHC and will discuss their possible implementations with the ALICE and LHCb detectors.
The first measurement of heavy-flavour production by the LHCb experiment in its fixed-target mode is presented. The production of $J/psi$ and $D^0$ mesons is studied with beams of protons of different energies colliding with gaseous targets of helium and argon with nucleon-nucleon centre-of-mass energies of $sqrt{s_{NN}} = 86.6 $ and $ 110.4$ ${rm GeV}$, respectively. The $J/psi$ and $D^0$ (including charge conjugate) production cross sections in $p{rm He}$ collisions in the rapidity range $[2,4.6]$ are found to be $sigma_{J/psi} = 652 pm 33$ (stat) $pm 42$ (syst) nb$/$nucleon and $sigma_{D^0} = 80.8 pm 2.4$ (stat) $pm 6.3$ (syst) $mu$b$/$nucleon, where the first uncertainty is statistical and the second is systematic. No evidence for a substantial intrinsic charm content of the nucleon is observed in the large Bjorken-$x$ region.
We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.
Experimental and theoretical studies of fluctuations in nucleus-nucleus interactions at high energies have started to play a major role in understanding of the concept of strong interactions. The elaborated procedures have been developed to disentang le different processes happening during nucleus-nucleus collisions. The fluctuations caused by a variation of the number of nucleons which participated in a collision are frequently considered the unwanted one. The methods to eliminate these fluctuations in fixed-target experiments are reviewed and tested. They can be of key importance in the following ongoing fixed-target heavy-ion experiments: NA61/SHINE at the CERN SPS, STAR-FT at the BNL RHIC, BM@N at JINR Nuclotron, HADES at the GSI SIS18 and in future experiments such as NA60+ at the CERN SPS, CBM at the FAIR SIS100, JHITS at J-PARC-HI MR.
We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا