ترغب بنشر مسار تعليمي؟ اضغط هنا

High luminosity fixed-target experiment at the LHC

82   0   0.0 ( 0 )
 نشر من قبل Cynthia Hadjidakis
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments ever and to study $pp$, $p$d and $p$A collisions at $sqrt{s_{NN}}=115$ GeV and Pb$p$ and PbA collisions at $sqrt{s_{NN}}=72$ GeV with high precision and modern detection techniques. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-$x$, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we will review the technical solutions to obtain a high-luminosity fixed-target experiment at the LHC and will discuss their possible implementations with the ALICE and LHCb detectors.



قيم البحث

اقرأ أيضاً

AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-$x$ physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the h ighly energetic 7 TeV proton and 2.76 A.TeV lead LHC beams, center-of-mass energies as large as $sqrt{s_{NN}}$ = 115 GeV in pp/pA and $sqrt{s_{NN}}$ = 72 GeV in AA can be reached, corresponding to an uncharted energy domain between SPS and RHIC. We report two main ways of performing fixed-target collisions at the LHC, both allowing for the usage of one of the existing LHC experiments. In these proceedings, after discussing the projected luminosities considered for one year of data taking at the LHC, we will present a selection of projections for light and heavy-flavour production.
Extraction of the multi-TeV proton and lead LHC beams with a bent crystal or by using an internal gas target allows one to perform the most energetic fixed-target experiment ever. pp, pd and pA collisions at $sqrt{s}$ = 115 GeV and Pbp and PbA collis ions at $sqrt{s_{rm{NN}}}$ = 72 GeV can be studied with high precision and modern detection techniques over a broad rapidity range. Using the LHCb or the ALICE detector in a fixed-target mode offers unprecedented possibilities to access heavy-flavour production in a new energy domain, half way between the SPS and the nominal RHIC energy. In this contribution, a review of projection studies for quarkonium and open charm and beauty production with both detector set-ups used with various nuclear targets and the LHC lead beams is presented.
We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.
We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.
The opportunities which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and lead LHC beams extracted by a bent crystal are outlined. In particular, such an experiment can greatly complement facilities with lepton beams by unraveling the partonic structure of polarised and unpolarised nucleons and of nuclei, especially at large momentum fractions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا