ﻻ يوجد ملخص باللغة العربية
We consider the manipulation of Bose-Einstein condensate vortices by optical potentials generated by focused laser beams. It is shown that for appropriate choices of the laser strength and width it is possible to successfully transport vortices to various positions inside the trap confining the condensate atoms. Furthermore, the full bifurcation structure of possible stationary single-charge vortex solutions in a harmonic potential with this type of impurity is elucidated. The case when a moving vortex is captured by a stationary laser beam is also studied, as well as the possibility of dragging the vortex by means of periodic optical lattices.
We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameter and external trap potential through similarity transformation technique which transforms the two coupled Gross-Pitaevskii equ
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is
We numerically study the breathing dynamics induced by collision between bright solitons in the one-dimensional Bose-Einstein condensates with strong dipole-dipole interaction. This breathing phenomenon is closely related to the after-collision short
The structure and stability of vortices in hybrid atomic-molecular Bose-Einstein condensates is analyzed in the framework of a two-component Gross-Pitaevskii-type model that describes the stimulated Raman-induced photoassociation process. New types o
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomi