ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Swift X-ray and UV views of comet C/2007 N3 (Lulin)

100   0   0.0 ( 0 )
 نشر من قبل Jenny Carter
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of simultaneous X-Ray and UV observations ofcomet C/2007 N3 (Lulin) taken on three days between January 2009 and March 2009 using the Swift observatory. For our X-ray observations, we used basic transforms to account for the movement of the comet to allow the combination of all available data to produce an exposure-corrected image. We fit a simple model to the extracted spectrum and measured an X-ray flux of 4.3+/-1.3 * 10^-13 ergs cm-2 s-1 in the 0.3 to 1.0 keV band. In the UV, we acquired large-aperture photometry and used a coma model to derive water production rates given assumptions regarding the distribution of water and its dissociation into OH molecules about the comets nucleus. We compare and discuss the X-ray and UV morphology of the comet. We show that the peak of the cometary X-ray emission is offset sunward of the UV peak emission, assumed to be the nucleus, by approximately 35,000 km. The offset observed, the shape of X-ray emission and the decrease of the X-ray emission comet-side of the peak, suggested that the comet was indeed collisionally thick to charge exchange, as expected from our measurements of the comets water production rate (6--8 10^28 mol. s-1). The X-ray spectrum is consistent with solar wind charge exchange emission, and the comet most likely interacted with a solar wind depleted of very highly ionised oxygen. We show that the measured X-ray lightcurve can be very well explained by variations in the comets gas production rates, the observing geometry and variations in the solar wind flux.

قيم البحث

اقرأ أيضاً

We report optical imaging, optical and near-infrared polarimetry, and Spitzer mid-infrared spectroscopy of comet C/2007 N3 (Lulin). Polarimetric observations were obtained in R (0.676 micron) at phase angles from 0.44 degrees to 21 degrees with simul taneous observations in H (1.65 micron) at 4.0 degrees, exploring the negative branch in polarization. Comet C/2007 N3 (Lulin) shows typical negative polarization in the optical as well as a similar negative branch near-infrared wavelengths. The 10 micron silicate feature is only weakly in emission and according to our thermal models, is consistent with emission from a mixture of silicate and carbon material. We argue that large, low-porosity (akin to Ballistic Particle Cluster Aggregates) rather absorbing aggregate dust particles best explain both the polarimetric and the mid-infrared spectral energy distribution.
We observed comet C/2007 N3 (Lulin) twice on UT 28 January 2009, using the UV grism of the Ultraviolet and Optical Telescope (UVOT) on board the Swift Gamma Ray Burst space observatory. Grism spectroscopy provides spatially resolved spectroscopy over large apertures for faint objects. We developed a novel methodology to analyze grism observations of comets, and applied a Haser comet model to extract production rates of OH, CS, NH, CN, C3, C2, and dust. The water production rates retrieved from two visits on this date were $6.7 pm 0.7$ and 7.9 $pm$ 0.7 x 1E28 molecules s-1, respectively. Jets were sought (but not found) in the white-light and `OH images reported here, suggesting that the jets reported by Knight and Schleicher (2009) are unique to CN. Based on the abundances of its carbon-bearing species, comet Lulin is `typical (i.e., not `depleted) in its composition.
Comet C/2007 N3 (Lulin) was observed with the Japanese infrared satellite AKARI in the near-infrared at a post-perihelion heliocentric distance of 1.7 AU. Observations were performed with the spectroscopic (2.5--5.0 micron) and imaging (2.4, 3.2, and 4.1 micron) modes on 2009 March 30 and 31 UT, respectively. AKARI images of the comet exhibit a sunward crescent-like shape coma and a dust tail extended toward the anti-solar direction. The 4.1 micron image (CO/CO2 and dust grains) shows a distribution different from the 2.4 and 3.2 micron images (H2O and dust grains). The observed spectrum shows distinct bands at 2.66 and 4.26 micron, attributed to H2O and CO2, respectively. This is the fifth comet in which CO2 has been directly detected in the near-infrared spectrum. In addition, CO at 4.67 micron and a broad 3.2--3.6 micron emission band from C-H bearing molecules were detected in the AKARI spectrum. The relative abundance ratios CO2/H2O and CO/H2O derived from the molecular production rates are sim 4%--5% and < 2%, respectively. Comet Lulin belongs to the group that has relatively low abundances of CO and CO2 among the comets observed ever.
We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal em ission at kT=0.64 keV with an X-ray band unabsorbed luminosity of 2.3x10^{34} erg s^{-1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2^{+0.3}_{-0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT=23^{+9}_{-5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
We have compiled a catalog of optically-selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma Ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both UVOT and XRT observations and 354 of which are detected by both instruments. The overall X-ray detection rate is ~60% which rises to ~85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about 0.3 dex to the quasar luminosity. We re-visit the alpha_ox-L_uv relation by selecting a clean sample with only type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared to studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L/L_Edd and alpha_uv. We do not find significant correlations between alpha_x and alpha_ox, alpha_ox and alpha_uv, and alpha_x and Log L(0.3-10 keV). The correlations between alpha_uv and alpha_x, alpha_ox and alpha_x, alpha_ox and alpha_uv, L/L_Edd and alpha_x, and L/L_Edd and alpha_ox are stronger amongst low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا