ترغب بنشر مسار تعليمي؟ اضغط هنا

Cepheid Calibrations of Modern Type Ia Supernovae:Implications for the Hubble Constant

223   0   0.0 ( 0 )
 نشر من قبل Adam G. Riess
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adam G. Riess




اسأل ChatGPT حول البحث

This is the first of two papers reporting measurements from a program to determine the Hubble constant to 5% precision from a refurbished distance ladder. We present new observations of 110 Cepheid variables in the host galaxies of two recent Type Ia supernovae (SNe Ia), NGC 1309 and NGC 3021, using the Advanced Camera for Surveys on the Hubble Space Telescope (HST). We also present new observations of the hosts previously observed with HST whose SNe Ia provide the most precise luminosity calibrations: SN 1994ae in NGC 3370, SN 1998aq in NGC 3982, SN 1990N in NGC 4639, and SN 1981B in NGC 4536, as well as the maser host, NGC 4258. Increasing the interval between observations enabled the discovery of new, longer-period Cepheids, including 57 with P>60 days, which extend these period-luminosity (PL) relations. We present 93 measurements of the metallicity parameter, 12 + log[O/H], measured from HII regions in the vicinity of the Cepheids and show these are consistent with solar metallicity. We find the slope of the seven dereddened PL relations to be consistent with that of the Large Magellanic Cloud Cepheids and with parallax measurements of Galactic Cepheids, and we address the implications for the Hubble constant. We also present multi-band light curves of SN 2002fk (in NGC 1309) and SN 1995al (in NGC 3021) which may be used to calibrate their luminosities. In the second paper we present observations of the Cepheids in the H-band obtained with the Near Infrared Camera and Multi-Object Spectrometer on HST, further mitigating systematic errors along the distance ladder resulting from dust and chemical variations. The quality and homogeneity of these SN and Cepheid data provide the basis for a more precise determination of the Hubble constant.



قيم البحث

اقرأ أيضاً

The accuracy of the Hubble constant measured with extragalactic Cepheids depends on robust photometry and background estimation in the presence of stellar crowding. The conventional approach accounts for crowding by sampling backgrounds near Cepheids and assuming they match those at their positions. We show a direct consequence of crowding by unresolved sources at Cepheid sites is a reduction in the fractional amplitudes of their light curves. We use a simple analytical expression to infer crowding directly from the light curve amplitudes of >200 Cepheids in 3 SNe~Ia hosts and NGC 4258 as observed by HST -- the first near-infrared amplitudes measured beyond the Magellanic Clouds. Where local crowding is minimal, we find near-infrared amplitudes match Milky Way Cepheids at the same periods. At greater stellar densities we find that the empirically measured amplitudes match the values predicted (with no free parameters) from crowding assessed in the conventional way from local regions, confirming their accuracy for estimating the background at the Cepheid locations. Extragalactic Cepheid amplitudes would need to be ~20% smaller than measured to indicate additional, unrecognized crowding as a primary source of the present discrepancy in H_0. Rather we find the amplitude data constrains a systematic mis-estimate of Cepheid backgrounds to be 0.029 +/- 0.037 mag, more than 5x smaller than the size of the present ~0.2 mag tension in H_0. We conclude that systematic errors in Cepheid backgrounds do not provide a plausible resolution to the Hubble tension.
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assu ming $Lambda$CDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local $H_0$ measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where intrinsic variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak $J$ magnitude $M_J = -18.524;pm;0.041$ mag and $H_0 = 72.8;pm;1.6$ (statistical) $pm$ 2.7 (systematic) km s$^{-1}$ Mpc$^{-1}$. The 2.2 $%$ statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak $J$ magnitude scatter is just $sim$0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing $H_0$ distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in $H_0$ with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak $J$-band magnitude.
In this work, we propose a cosmological model-independent and non-local method to constrain the Hubble Constant $H_0$. Inspired by the quasi cosmological model-independent and $H_0$-free properties of the `shifted Hubble diagram of HII galaxies (HIIG x) defined by Wei et al. (2016), we joint analyze it with the parametric type Ia supernova (SN Ia) Hubble diagram (e.g. the joint-lightcurves-analysis sample, JLA) and get a Bayesian Inference of Hubble constant, $H_0 = 71 pm 20 mathrm{km s^{-1} Mpc^{-1}}$. Although with large uncertainty, we find that $H_0$ is only strongly degenerate with the B-band absolute magnitude ($M_B$) of SN Ia but almost independent on other nuisance parameters. Therefore the accuracy can be simultaneously improved by a tight constraint of $M_B$ through a cosmological and $H_0$ independent way. This method can be extended further to get more-literally non-local results of $H_0$ by using other Hubble diagrams at higher redshifts.
Motivated by the large observed diversity in the properties of extra-galactic extinction by dust, we re-analyse the Cepheid calibration used to infer the local value of the Hubble constant, $H_0$, from Type Ia supernovae. Unlike the SH0ES team, we do not enforce a universal color-luminosity relation to correct the near-IR Cepheid magnitudes. Instead, we focus on a data driven method, where the measured colors of the Cepheids are used to derive a color-luminosity relation for each galaxy individually. We present two different analyses, one based on Wesenheit magnitudes, a common practice in the field that attempts to combine corrections from both extinction and variations in intrinsic colors, resulting in $H_0=66.9pm 2.5$ km/s/Mpc, in agreement with the Planck value. In the second approach, we calibrate using color excesses with respect to derived average intrinsic colors, yielding $H_0=71.8pm 1.6$ km/s/Mpc, a $2.7,sigma$ tension with the value inferred from the cosmic microwave background. Hence, we argue that systematic uncertainties related to the choice of Cepheid color-luminosity calibration method currently inhibits us from measuring $H_0$ to the precision required to claim a substantial tension with Planck data.
The methodology involved in deriving the Hubble Constant via the calibration of the corrected peak luminosities of Type Ia supernovae (SNe) is reviewed. We first present a re-analysis of the Calan-Tololo (C-T) and Center for Astrophysics (CfA) Type I a SN surveys. Bivariate linear least squares and quadratic boot-strapped fits in peak apparent magnitude and light curve shape are employed to correct this heterogeneous sample of peak apparent magnitudes, resulting in an homogeneous (and excellent) secondary distance indicator: the so-called corrected peak luminosity. We next provide an empirical calibration for this corrected luminosity, using Cepheid-based distances for seven nearby spiral galaxies host to Type Ia SNe. Included in this sample is the spectroscopically peculiar SN 1991T (in NGC 4527), whose corrected peak luminosity is shown to be indistinguishable from that of so-called ``normal SNe. A robust value of the Hubble Constant is derived and shown to be H0=73+/-2(r)+/-7(s) km/s/Mpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا