ﻻ يوجد ملخص باللغة العربية
We consider Schrodinger operators on [0,infty) with compactly supported, possibly complex-valued potentials in L^1([0,infty)). It is known (at least in the case of a real-valued potential) that the location of eigenvalues and resonances determines the potential uniquely. From the physical point of view one expects that large resonances are increasingly insignificant for the reconstruction of the potential from the data. In this paper we prove the validity of this statement, i.e., we show conditional stability for finite data. As a by-product we also obtain a uniqueness result for the inverse resonance problem for complex-valued potentials.
We consider massless Dirac operators on the real line with compactly supported potentials. We solve two inverse problems (including characterization): in terms of zeros of reflection coefficient and in terms of poles of reflection coefficients (i.e.
Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrodinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singu
We prove Anderson localization at the internal band-edges for periodic magnetic Schr{o}dinger operators perturbed by random vector potentials of Anderson-type. This is achieved by combining new results on the Lifshitz tails behavior of the integrated
We study the Bloch variety of discrete Schrodinger operators associated with a complex periodic potential and a general finite-range interaction, showing that the Bloch variety is irreducible for a wide class of lattice geometries in arbitrary dimens
We demonstrate how the Moutard transformation of two-dimensional Schrodinger operators acts on the Faddeev eigenfunctions on the zero energy level and present some explicitly computed examples of such eigenfunctions for smooth fast decaying potential