ﻻ يوجد ملخص باللغة العربية
PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of $10^{-8}$). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15 2006 in a $350times 600 km$ orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives and the performance in its first two years of operation. Data on protons of trapped, secondary and galactic nature - as well as measurements of the December 13 2006 Solar Particle Event - are provided.
On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a
The NUCLEON experiment was designed to study the chemical composition and energy spectra of galactic cosmic ray nuclei from protons to zinc at energies of $sim10^{11}$--$10^{15}$,eV per particle. The research was carried out with the NUCLEON scientif
The SRG observatory, equipped with the X-ray telescopes Mikhail Pavlinsky ART-XC and eROSITA, was launched by Roscosmos to the L2 point on July 13, 2019. The launch was carried out from Baikonur by a Proton-M rocket with a DM-03 upper stage. The Germ
The PAMELA satellite borne experiment is designed to study cosmic rays with great accuracy in a wide energy range. One of PAMELAs main goal is the study of the antimatter component of cosmic rays. The experiment, housed on board the Russian satellite
We describe the ongoing Relativistic Binary programme (RelBin), a part of the MeerTime large survey project with the MeerKAT radio telescope. RelBin is primarily focused on observations of relativistic effects in binary pulsars to enable measurements