ﻻ يوجد ملخص باللغة العربية
Approximately over 50 million people worldwide suffer from epilepsy. Traditional diagnosis of epilepsy relies on tedious visual screening by highly trained clinicians from lengthy EEG recording that contains the presence of seizure (ictal) activities. Nowadays, there are many automatic systems that can recognize seizure-related EEG signals to help the diagnosis. However, it is very costly and inconvenient to obtain long-term EEG data with seizure activities, especially in areas short of medical resources. We demonstrate in this paper that we can use the interictal scalp EEG data, which is much easier to collect than the ictal data, to automatically diagnose whether a person is epileptic. In our automated EEG recognition system, we extract three classes of features from the EEG data and build Probabilistic Neural Networks (PNNs) fed with these features. We optimize the feature extraction parameters and combine these PNNs through a voting mechanism. As a result, our system achieves an impressive 94.07% accuracy, which is very close to reported human recognition accuracy by experienced medical professionals.
Outpatient clinics often run behind schedule due to patients who arrive late or appointments that run longer than expected. We sought to develop a generalizable method that would allow healthcare providers to diagnose problems in workflow that disrup
Critical task and cognition-based environments, such as in military and defense operations, aviation user-technology interaction evaluation on UI, understanding intuitiveness of a hardware model or software toolkit, etc. require an assessment of how
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study pro
Predicting post-operative seizure freedom using functional correlation networks derived from interictal intracranial EEG has shown some success. However, there are important challenges to consider. 1: electrodes physically closer to each other natura
Sepsis is a leading cause of mortality and critical illness worldwide. While robust biomarkers for early diagnosis are still missing, recent work indicates that hyperspectral imaging (HSI) has the potential to overcome this bottleneck by monitoring m