ترغب بنشر مسار تعليمي؟ اضغط هنا

Waiting for mu->eg from the MEG experiment

140   0   0.0 ( 0 )
 نشر من قبل Paride Paradisi
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Standard Model (SM) predictions for the lepton flavor-violating (LFV) processes like mu->eg are well far from any realistic experimental resolution, thus, the appearance of m->eg at the running MEG experiment would unambiguously point towards a New Physics (NP) signal. In this article, we discuss the phenomenological implications in case of observation/improved upper bound on m->eg at the running MEG experiment for supersymmetric (SUSY) scenarios with a see-saw mechanism accounting for the neutrino masses. We outline the role of related observables to m->eg in shedding light on the nature of the SUSY LFV sources providing useful tools i) to reconstruct some fundamental parameters of the neutrino physics and ii) to test whether an underlying SUSY Grand Unified Theory (GUT) is at work. The perspectives for the detection of LFV signals in tau decays are also discussed.

قيم البحث

اقرأ أيضاً

A search for the decay mu -> e gamma, performed at PSI and based on data from the initial three months of operation of the MEG experiment, yields an upper limit on the branching ratio of BR(mu -> e gamma) < 2.8 x 10**-11 (90% C.L.). This corresponds to the measurement of positrons and photons from ~ 10**14 stopped mu-decays by means of a superconducting positron spectrometer and a 900 litre liquid xenon photon detector.
The MEG experiment took data at the Paul Scherrer Institute in the years 2009--2013 to test the violation of the lepton flavour conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most stringent limit on the charged lepton flavour violating decay ${mu}^+ rightarrow {rm e}^+ gamma$: BR(${mu}^+ rightarrow {rm e}^+ gamma$) $<4.2 times 10^{-13}$ at 90% confidence level. The MEG detector has been upgraded in order to reach a sensitivity of $6times10^{-14}$. The basic principle of MEG II is to achieve the highest possible sensitivity using the full muon beam intensity at the Paul Scherrer Institute ($7times10^{7}$ muons/s) with an upgraded detector. The main improvements are better rate capability of all sub-detectors and improved resolutions while keeping the same detector concept. In this paper, we present the current status of the preparation, integration and commissioning of the MEG II detector in the recent engineering runs.
The MEG experiment makes use of one of the worlds most intense low energy muon beams, in order to search for the lepton flavour violating process $mu^{+} rightarrow {rm e}^{+} gamma$. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be $P_{mu} = -1$ by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be $P_{mu} = -0.85 pm 0.03 ~ {rm (stat)} ~ { }^{+ 0.04}_{-0.05} ~ {rm (syst)}$ at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our ${megsign}$ search induced by the muon radiative decay: $mu^{+} rightarrow {rm e}^{+} bar{ u}_{mu} u_{rm e} gamma$.
78 - J. Adam , X. Bai , A. M. Baldini 2013
The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay meg by using one of the most intense continuous $mu^+$ beams in the world. This paper presents the MEG comp onents: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus.
The MEG experiment, designed to search for the mu+->e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the b ranching ratio, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا