ﻻ يوجد ملخص باللغة العربية
The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay meg by using one of the most intense continuous $mu^+$ beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus.
A search for the decay mu -> e gamma, performed at PSI and based on data from the initial three months of operation of the MEG experiment, yields an upper limit on the branching ratio of BR(mu -> e gamma) < 2.8 x 10**-11 (90% C.L.). This corresponds
We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by
An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to
The PIENU experiment at TRIUMF is aimed at a measurement of the branching ratio $R^{e/mu}$ = ${Gammabig((pi^{+} rightarrow e^{+} u_{e}) + (pi^{+} rightarrow e^{+} u_{e}gamma)big)}/{Gammabig((pi^{+} rightarrow mu^{+} u_{mu})+(pi^{+} rightarrow mu^{
The MEG experiment took data at the Paul Scherrer Institute in the years 2009--2013 to test the violation of the lepton flavour conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has,