ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fate of High-Velocity Clouds: Warm or Cold Cosmic Rain?

167   0   0.0 ( 0 )
 نشر من قبل Fabian Heitsch
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabian Heitsch




اسأل ChatGPT حول البحث

We present two sets of grid-based hydrodynamical simulations of high-velocity clouds (HVCs) traveling through the diffuse, hot Galactic halo. These HI clouds have been suggested to provide fuel for ongoing star formation in the Galactic disk. The first set of models is best described as a wind-tunnel experiment in which the HVC is exposed to a wind of constant density and velocity. In the second set of models we follow the trajectory of the HVC on its way through an isothermal hydrostatic halo towards the disk. Thus, we cover the two extremes of possible HVC trajectories. The resulting cloud morphologies exhibit a pronounced head-tail structure, with a leading dense cold core and a warm diffuse tail. Morphologies and velocity differences between head and tail are consistent with observations. For typical cloud velocities and halo densities, clouds with H{small{I}} masses $< 10^{4.5}$ M$_odot$ will lose their H{small{I}} content within 10 kpc or less. Their remnants may contribute to a population of warm ionized gas clouds in the hot coronal gas, and they may eventually be integrated in the warm ionized Galactic disk. Some of the (still over-dense, but now slow) material might recool, forming intermediate or low velocity clouds close to the Galactic disk. Given our simulation parameters and the limitation set by numerical resolution, we argue that the derived disruption distances are strong upper limits.

قيم البحث

اقرأ أيضاً

We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (HI) observations from the Parkes Galactic All-Sky Survey (GASS). Excellent spectral resolution allows clouds with narr ow-line components to be resolved. The total number of detected clouds is 419. We describe the method of cataloging and present the basic parameters of the clouds. We discuss the general distribution of the high-velocity clouds and classify the clouds based on their morphological type. The presence of a significant number of head-tail clouds and their distribution in the region is discussed in the context of Magellanic System simulations. We suggest that ram-pressure stripping is a more important factor than tidal forces for the morphology and formation of the Magellanic Leading Arm and that different environmental conditions might explain the morphological difference between the Magellanic Leading Arm and Magellanic Stream. We also discuss a newly identified population of clouds that forms the LA IV and a new diffuse bridge-like feature connecting the LA II and III complexes.
We present a mean-field model that describes droplet growth due to condensation and collisions and droplet loss due to fallout. The model allows for an effective numerical simulation. We study how the rain initiation time depends on different paramet ers. We also present a simple model that allows one to estimate the rain initiation time for turbulent clouds with an inhomogeneous concentration of cloud condensation nuclei. In particular, we show that over-seeding even a part of a cloud by small hygroscopic nuclei one can substantially delay the onset of precipitation.
116 - David B. Henley 2012
In order to determine if the material ablated from high-velocity clouds (HVCs) is a significant source of low-velocity high ions (C IV, N V, and O VI) such as those found in the Galactic halo, we simulate the hydrodynamics of the gas and the time-dep endent ionization evolution of its carbon, nitrogen, and oxygen ions. Our suite of simulations examines the ablation of warm material from clouds of various sizes, densities, and velocities as they pass through the hot Galactic halo. The ablated material mixes with the environmental gas, producing an intermediate-temperature mixture that is rich in high ions and that slows to the speed of the surrounding gas. We find that the slow mixed material is a significant source of the low-velocity O VI that is observed in the halo, as it can account for at least ~1/3 of the observed O VI column density. Hence, any complete model of the high ions in the halo should include the contribution to the O VI from ablated HVC material. However, such material is unlikely to be a major source of the observed C IV, presumably because the observed C IV is affected by photoionization, which our models do not include. We discuss a composite model that includes contributions from HVCs, supernova remnants, a cooling Galactic fountain, and photoionization by an external radiation field. By design, this model matches the observed O VI column density. This model can also account for most or all of the observed C IV, but only half of the observed N V.
We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velociti es. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds, where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization (NEI) algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sight lines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass approx 120 Msun) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass approx 4e5 Msun) remained largely intact, although deformed, during its simulation period (240 Myr).
We use a pair of high resolution N-body simulations implementing two dark matter models, namely the standard cold dark matter (CDM) cosmogony and a warm dark matter (WDM) alternative where the dark matter particle is a 1.5keV thermal relic. We combin e these simulations with the GALFORM semi-analytical galaxy formation model in order to explore differences between the resulting galaxy populations. We use GALFORM model variants for CDM and WDM that result in the same z=0 galaxy stellar mass function by construction. We find that most of the studied galaxy properties have the same values in these two models, indicating that both dark matter scenarios match current observational data equally well. Even in under-dense regions, where discrepancies in structure formation between CDM and WDM are expected to be most pronounced, the galaxy properties are only slightly different. The only significant difference in the local universe we find is in the galaxy populations of Local Volumes, regions of radius 1 to 8Mpc around simulated Milky Way analogues. In such regions our WDM model provides a better match to observed local galaxy number counts and is five times more likely than the CDM model to predict sub-regions within them that are as empty as the observed Local Void. Thus, a highly complete census of the Local Volume and future surveys of void regions could provide constraints on the nature of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا