ترغب بنشر مسار تعليمي؟ اضغط هنا

String Attractors and Combinatorics on Words

74   0   0.0 ( 0 )
 نشر من قبل Marinella Sciortino
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The notion of emph{string attractor} has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word $w=w[1]w[2]cdots w[n]$ is a subset $Gamma$ of the positions ${1,ldots,n}$, such that all distinct factors of $w$ have an occurrence crossing at least one of the elements of $Gamma$. While finding the smallest string attractor for a word is a NP-complete problem, it has been proved in [Kempa and Prezza, 2018] that dictionary compressors can be interpreted as algorithms approximating the smallest string attractor for a given word. In this paper we explore the notion of string attractor from a combinatorial point of view, by focusing on several families of finite words. The results presented in the paper suggest that the notion of string attractor can be used to define new tools to investigate combinatorial properties of the words.



قيم البحث

اقرأ أيضاً

For a partial word $w$ the longest common compatible prefix of two positions $i,j$, denoted $lccp(i,j)$, is the largest $k$ such that $w[i,i+k-1]uparrow w[j,j+k-1]$, where $uparrow$ is the compatibility relation of partial words (it is not an equival ence relation). The LCCP problem is to preprocess a partial word in such a way that any query $lccp(i,j)$ about this word can be answered in $O(1)$ time. It is a natural generalization of the longest common prefix (LCP) problem for regular words, for which an $O(n)$ preprocessing time and $O(1)$ query time solution exists. Recently an efficient algorithm for this problem has been given by F. Blanchet-Sadri and J. Lazarow (LATA 2013). The preprocessing time was $O(nh+n)$, where $h$ is the number of holes in $w$. The algorithm was designed for partial words over a constant alphabet and was quite involved. We present a simple solution to this problem with slightly better runtime that works for any linearly-sortable alphabet. Our preprocessing is in time $O(nmu+n)$, where $mu$ is the number of blocks of holes in $w$. Our algorithm uses ideas from alignment algorithms and dynamic programming.
We give efficient algorithms for ranking Lyndon words of length n over an alphabet of size {sigma}. The rank of a Lyndon word is its position in the sequence of lexicographically ordered Lyndon words of the same length. The outputs are integers of ex ponential size, and complexity of arithmetic operations on such large integers cannot be ignored. Our model of computations is the word-RAM, in which basic arithmetic operations on (large) numbers of size at most {sigma}^n take O(n) time. Our algorithm for ranking Lyndon words makes O(n^2) arithmetic operations (this would imply directly cubic time on word-RAM). However, using an algebraic approach we are able to reduce the total time complexity on the word-RAM to O(n^2 log {sigma}). We also present an O(n^3 log^2 {sigma})-time algorithm that generates the Lyndon word of a given length and rank in lexicographic order. Finally we use the connections between Lyndon words and lexicographically minimal de Bruijn sequences (theorem of Fredricksen and Maiorana) to develop the first polynomial-time algorithm for decoding minimal de Bruijn sequence of any rank n (it determines the position of an arbitrary word of length n within the de Bruijn sequence).
A universal word for a finite alphabet $A$ and some integer $ngeq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A $ and $n$. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from $A$ may contain an arbitrary number of occurrences of a special `joker symbol $Diamond otin A$, which can be substituted by any symbol from $A$. For example, $u=0Diamond 011100$ is a linear partial word for the binary alphabet $A={0,1}$ and for $n=3$ (e.g., the first three letters of $u$ yield the subwords $000$ and $010$). We present results on the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the number of $Diamond$s and their positions), including various explicit constructions. We also provide numerous examples of universal partial words that we found with the help of a computer.
We prove new results concerning the relation between bifix codes, episturmian words and subgroups offree groups. We study bifix codes in factorial sets of words. We generalize most properties of ordinary maximal bifix codes to bifix codes maximal in a recurrent set $F$ of words ($F$-maximal bifix codes). In the case of bifix codes contained in Sturmian sets of words, we obtain several new results. Let $F$ be a Sturmian set of words, defined as the set of factors of a strict episturmian word. Our results express the fact that an $F$-maximal bifix code of degree $d$ behaves just as the set of words of $F$ of length $d$. An $F$-maximal bifix code of degree $d$ in a Sturmian set of words on an alphabet with $k$ letters has $(k-1)d+1$ elements. This generalizes the fact that a Sturmian set contains $(k-1)d+1$ words of length $d$. Moreover, given an infinite word $x$, if there is a finite maximal bifix code $X$ of degree $d$ such that $x$ has at most $d$ factors of length $d$ in $X$, then $x$ is ultimately periodic. Our main result states that any $F$-maximal bifix code of degree $d$ on the alphabet $A$ is the basis of a subgroup of index $d$ of the free group on~$A$.
106 - Daniel Smania 2016
We show that in a generic finite-dimensional real-analytic family of real-analytic multimodal maps, the subset of parameters on which the corresponding map has a solenoidal attractor with bounded combinatorics is a set with zero Lebesgue measure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا