ترغب بنشر مسار تعليمي؟ اضغط هنا

High Redshift Dust Obscured Galaxies, A Morphology-SED Connection Revealed by Keck Adaptive Optics

327   0   0.0 ( 0 )
 نشر من قبل Jason Melbourne
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple optical to mid-IR color selection, R-[24] > 14, i.e. f_nu(24) / f_nu(R) > 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z~2 +/- 0.5. Extreme mid-IR luminosities (L_{IR} > 10^{12-14}) suggest that DOGs are powered by a combination of AGN and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest frame optical morphologies, we obtained high spatial resolution (0.05 -0.1) Keck Adaptive Optics (AO) K-band images of 15 DOGs. The images reveal a wide range of morphologies, including: small exponential disks (8 of 15), small ellipticals (4 of 15), and unresolved sources (2 of 15). One particularly diffuse source could not be classified because of low signal to noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of fifteen in the sample show multiple resolved components with separations of ~1 kpc, circumstantial evidence for ongoing mergers.



قيم البحث

اقرأ أيضاً

207 - J. Melbourne 2008
Spitzer MIPS images in the Bootes field of the NOAO Deep Wide-Field Survey have revealed a class of extremely dust obscured galaxy (DOG) at z~2. The DOGs are defined by very red optical to mid-IR (observed-frame) colors, R - [24 um] > 14 mag, i.e. f_ v (24 um) / f_v (R) > 1000. They are Ultra-Luminous Infrared Galaxies with L_8-1000 um > 10^12 -10^14 L_sun, but typically have very faint optical (rest-frame UV) fluxes. We imaged three DOGs with the Keck Laser Guide Star Adaptive Optics (LGSAO) system, obtaining ~0.06 resolution in the K-band. One system was dominated by a point source, while the other two were clearly resolved. Of the resolved sources, one can be modeled as a exponential disk system. The other is consistent with a de Vaucouleurs profile typical of elliptical galaxies. The non-parametric measures of their concentration and asymmetry, show the DOGs to be both compact and smooth. The AO images rule out double nuclei with separations of greater than 0.1 (< 1 kpc at z=2), making it unlikely that ongoing major mergers (mass ratios of 1/3 and greater) are triggering the high IR luminosities. By contrast, high resolution images of z~2 SCUBA sources tend to show multiple components and a higher degree of asymmetry. We compare near-IR morphologies of the DOGs with a set of z=1 luminous infrared galaxies (LIRGs; L_IR ~ 10^11 L_sun) imaged with Keck LGSAO by the Center for Adaptive Optics Treasury Survey. The DOGs in our sample have significantly smaller effective radii, ~1/4 the size of the z=1 LIRGs, and tend towards higher concentrations. The small sizes and high concentrations may help explain the globally obscured rest-frame blue-to-UV emission of the DOGs.
We use deep observations taken with the Photodetector Array Camera and Spectrometer (PACS), on board the Herschel satellite as part of the PACS evolutionary probe (PEP) guaranteed project along with submm ground-based observations to measure the dust mass of a sample of high-z submillimeter galaxies (SMGs). We investigate their dust content relative to their stellar and gas masses, and compare them with local star-forming galaxies. High-z SMGs are dust rich, i.e. they have higher dust-to-stellar mass ratios compared to local spiral galaxies (by a factor of 30) and also compared to local ultraluminous infrared galaxies (ULIRGs, by a factor of 6). This indicates that the large masses of gas typically hosted in SMGs have already been highly enriched with metals and dust. Indeed, for those SMGs whose gas mass is measured, we infer dust-to-gas ratios similar or higher than local spirals and ULIRGs. However, similarly to other strongly star-forming galaxies in the local Universe and at high-z, SMGs are characterized by gas metalicities lower (by a factor of a few) than local spirals, as inferred from their optical nebular lines, which are generally ascribed to infall of metal-poor gas. This is in contrast with the large dust content inferred from the far-IR and submm data. In short, the metalicity inferred from the dust mass is much higher (by more than an order of magnitude) than that inferred from the optical nebular lines. We discuss the possible explanations of this discrepancy and the possible implications for the investigation of the metalicity evolution at high-z.
497 - Luke Finnerty 2020
We present rest-frame optical spectroscopic observations of 24 Hot Dust-Obscured Galaxies (Hot DOGs) at redshifts 1.7-4.6 with KECK/NIRES. Our targets are selected based on their extreme red colors to be the highest luminosity sources from the WISE i nfrared survey. In 20 sources with well-detected emission we fit the key [O III], H$beta$, H$alpha$, [N II], and [S II] diagnostic lines to constrain physical conditions. Of the 17 targets with a clear detection of the [O III]$rm lambda$5007A emission line, 15 display broad blueshifted and asymmetric line profiles, with widths ranging from 1000 to 8000 $rm km s^{-1}$ and blueshifts up to 3000 $rm km s^{-1}$. These kinematics provide strong evidence for the presence of massive ionized outflows of up to $8000 rm M_odot yr^{-1}$, with a median of $150 rm M_odot yr^{-1}$. As many as eight sources show optical emission line ratios consistent with vigorous star formation. Balmer line star-formation rates, uncorrected for reddening, range from 30--1300 $rm M_odot yr^{-1}$, with a median of $50 rm M_odot yr^{-1}$. Estimates of the SFR from SED fitting of mid and far-infrared photometry suggest significantly higher values. We estimate the central black hole masses to be of order $10^{8-10}rm M_odot$, assuming the present-day $rm M_{BH}-sigma_*$ relation. The bolometric luminosities and the estimated masses of the central black holes of these galaxies suggest that many of the AGN-dominated Hot DOGs are accreting at or above their Eddington limit. The combination of ongoing star formation, massive outflows, and high Eddington ratios suggest Hot DOGs are a transitional phase in galaxy evolution.
We use high-resolution adaptive optics (AO) imaging on the Keck II telescope to study the gravitational lens B0128+437 in unprecedented detail, allowing us to resolve individual lensed quasar components and, for the first time, detect and measure pro perties of the lensing galaxy. B0128+437 is a small separation lens with known flux-ratio and astrometric anomalies. We discuss possible causes for these anomalies, including the presence of substructure in the lensing galaxy, propagation effects due to dust and a turbulent interstellar medium, and gravitational microlensing. This work on B0128 demonstrates that AO will be an essential tool for studying the many new small-separation lenses expected from future surveys.
We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a $1.71pm 0.27 M_{rm Jup}$ planet orbit ing a $0.69pm 0.04M_{odot}$ K-dwarf host star at a distance of $6.89pm 0.77,$kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet-host star projected separation is only weakly constrained due to the close-wide light curve degeneracy; the 2$sigma$ projected separation range is 0.6--$7.2,$AU. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis that assumes that all stars have an equal chance of hosting a star of the observed mass ratio. This and the similar result for event MOA-2013-BLG-220 suggests that more massive stars may be more likely to host planets with a mass ratio in the $0.002 < q < 0.004$ range that orbit beyond the snow line. These results also indicate the importance of host star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASAs Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events. This host lens is the highest contrast lens-source detected in microlensing mass measurement analysis (the lens being 10$times$ fainter than the source). We present an improved method of calculating photometry and astrometry uncertainties based on the Jackknife method, which produces more accurate errors that are $sim$$2.5 times$ larger than previous estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا