ﻻ يوجد ملخص باللغة العربية
The dynamical instability of rough hard-disk fluids in two dimensions is characterized through the Lyapunov spectrum and the Kolmogorov-Sinai entropy, $h_{KS}$, for a wide range of densities and moments of inertia $I$. For small $I$ the spectrum separates into translation-dominated and rotation-dominated parts. With increasing $I$ the rotation-dominated part is gradually filled in at the expense of translation, until such a separation becomes meaningless. At any density, the rate of phase-space mixing, given by $h_{KS}$, becomes less and less effective the more the rotation affects the dynamics. However, the degree of dynamical chaos, measured by the maximum Lyapunov exponent, is only enhanced by the rotational degrees of freedom for high-density gases, but is diminished for lower densities. Surprisingly, no traces of Lyapunov modes were found in the spectrum for larger moments of inertia. The spatial localization of the perturbation vector associated with the maximum exponent however persists for any $I$.
Although many equations of state of hard-disk fluids have been proposed, none is capable of reproducing the currently calculated or estimated values of the first eighteen virial coefficients at the same time as giving very good accuracy when compared
Lyapunov exponents are well-known characteristic numbers that describe growth rates of perturbations applied to a trajectory of a dynamical system in different state space directions. Covariant (or characteristic) Lyapunov vectors indicate these dire
We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. S
The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos,
We provide a constructive proof on the equivalence of two fundamental concepts: the global Lyapunov function in engineering and the potential function in physics, establishing a bridge between these distinct fields. This result suggests new approache