ترغب بنشر مسار تعليمي؟ اضغط هنا

Damping of Exciton Rabi Rotations by Acoustic Phonons in Optically Excited InGaAs/GaAs Quantum Dots

558   0   0.0 ( 0 )
 نشر من قبل Andrew Ramsay
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental evidence identifying acoustic phonons as the principal source of the excitation-induced-dephasing (EID) responsible for the intensity damping of quantum dot excitonic Rabi rotations. The rate of EID is extracted from temperature dependent Rabi rotation measurements of the ground-state excitonic transition, and is found to be in close quantitative agreement with an acoustic-phonon model.



قيم البحث

اقرأ أيضاً

We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse-areas of up to $14pi$. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse -area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb-shift.
Recently, longitudinal acoustic phonons have been identified as the main source of the intensity damping observed in Rabi rotation measurements of the ground-state exciton of a single InAs/GaAs quantum dot. Here we report experiments of intensity dam ped Rabi rotations in the case of detuned laser pulses, the results have implications for the coherent optical control of both excitons and spins using detuned laser pulses.
Multiple quantum beats of a system of the coherently excited quantum confined exciton states in a high-quality heterostructure with a wide InGaAs/GaAs quantum well are experimentally detected by the spectrally resolved pump-probe method for the first time. The beat signal is observed as at positive as at negative delays between the pump and probe pulses. A theoretical model is developed, which allows one to attribute the QBs at negative delay to the four-wave mixing (FWM) signal detected at the non-standard direction. The beat signal is strongly enhanced by the interference of the FWM wave with the polarization created by the probe pulse. At positive delay, the QBs are due to the mutual interference of the quantum confined exciton states. Several QB frequencies are observed in the experiments, which coincide with the interlevel spacings in the exciton system. The decay time for QBs is of order of several picoseconds at both the positive and negative delays. They are close to the relaxation time of exciton population that allows one to consider the exciton depopulation as the main mechanism of the coherence relaxation in the system under study.
InGaAs Quantum Dots embedded in GaAs barriers, grown in inverted tetrahedral recesses of 7 {mu}m edge, have showed interesting characteristics in terms of uniformity and spectral narrowness of the emission. In this paper we present a study on the fin e structure splitting (FSS). The investigation of about 40 single quantum dots revealed two main points: (1) the values of this parameter are very similar from dot to dot, proving again the uniformity of Pyramidal QD properties, (2) there is a little chance, in the sample investigated, to find a dot with natural zero splitting, but the values found (the mean being 13 {mu}eV) should always guarantee the capability of restoring the degeneracy with some corrective technique (e.g. application of a small magnetic field).
We investigated optical spin orientation and dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots (QDs) doped by a single Mn atom, a magnetic impurity providing a neutral acceptor A$^0$ with an effective spin $J=1$ . We find that the spin of an electron photo-created in such a quantum dot can be efficiently oriented by a quasi-resonant circularly-polarized excitation. For the electron spin levels which are made quasi-degenerate by a magnetic field compensating the exchange interaction $Delta_e$ with A$^0$, there is however a full depolarization due the anisotropic part of the exchange. Still, in most studied QDs, the spin polarized photo-electrons give rise to a pronounced DNP which grows with a longitudinal magnetic field until a critical field where it abruptly vanishes. For some QDs, several replica of such DNP sequence are observed at different magnetic fields. This striking behavior is qualitatively discussed as a consequence of different exchange interactions experienced by the electron, driving the DNP rate via the energy cost of electron-nucleus spin flip-flops.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا