ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical investigation of methane under pressure

116   0   0.0 ( 0 )
 نشر من قبل Leonardo Spanu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present computer simulations of liquid and solid phases of condensed methane at pressures below 25 GPa, between 150 and 300 K, where no appreciable molecular dissociation occurs. We used molecular dynamics (MD) and metadynamics techniques, and empirical potentials in the rigid molecule approximation, whose validity was confirmed a posteriori by carrying out it ab initio MD simulations for selected pressure and temperature conditions. Our results for the melting line are in satisfactory agreement with existing measurements. We find that the fcc crystal transforms into a hcp structure with 4 molecules per unit cell (B phase) at about 10 GPa and 150 K, and that the B phase transforms into a monoclinic high pressure phase above 20 GPa. Our results for solid/solid phase transitions are consistent with those of Raman studies but the phase boundaries estimated in our calculations are at higher pressure than those inferred from spectroscopic data.



قيم البحث

اقرأ أيضاً

We investigate the pressure phase diagram of FeTe, predicting structural and magnetic properties in the normal state at zero temperature within density functional theory (DFT). We carefully examined several possible different crystal structures over a pressure range up to $approx 30 $ GPa: simple tetragonal (PbO type), simple monoclinic, orthorhombic (MnP type), hexagonal (NiAs and wurzite type) and cubic (CsCl and NaCl type). We predict pressure to drive the system through different magnetic ordering (notably also some ferromagnetic phases) eventually suppressing magnetism at around 17GPa. We speculate the ferromagnetic order to be the reason for the absence of a superconducting phase in FeTe at variance with the case of FeSe.
Electronic and magnetic properties of Ga$_{1-x}$Mn$_{x}$As, obtained from first-principles calculations employing the hybrid HSE06 functional, are presented for $x=6.25%$ and $12.5%$ under pressures ranging from 0 to 15 GPa. In agreement with photoem ission experiments at ambient pressure, we find for $x=6.25%$ that non-hybridized Mn-3$d$ levels and Mn-induced states reside about 5 and 0.4 eV below the Fermi energy, respectively. For elevated pressures, the Mn-3$d$ levels, Mn-induced states, and the Fermi level shift towards higher energies, however, the position of the Mn-induced states relative to the Fermi energy remains constant due to hybridization of the Mn-3$d$ levels with the valence As-4$p$ orbitals. We also evaluate, employing Monte Carlo simulations, the Curie temperature ($T_{{rm C}}$). At zero pressure, we obtain $T_{{rm C}}=181$K, whereas the pressure-induced changes in $T_{{rm C}}$ are d$T_{{rm C}}$/d$p=+4.3$K/GPa for $x=12.5%$ and an estimated value of d$T_{{rm C}}$/d$papprox+2.2$K/GPa for $x=6.25%$ under pressures up to 6 GPa. The determined values of d$T_{{rm C}}$/d$p$ compare favorably with d$T_{{rm C}}$/d$p=+$(2-3) K/GPa at $pleq1.2$GPa found experimentally and estimated within the $p$-$d$ Zener model for Ga$_{0.93}$Mn$_{0.07}$As in the regime where hole localization effects are of minor importance [M. Gryglas-Borysiewicz $et$ $al$., Phys. Rev. B ${bf 82}$, 153204 (2010)].
In this article, we report emergence of topological phase in XMR material TmSb under hydrostatic pressure using first principles calculations. We find that TmSb, a topologically trivial semimetal, undergoes a topological phase transition with band in version at X point without breaking any symmetry under a hydrostatic pressure of 12 GPa. At 15 GPa, it again becomes topologically trivial with band inversion at $Gamma$ as well as X point. We find that the pressures corresponding to the topological phase transitions are far below the pressure corresponding to structural phase transition at 25.5 GPa. The reentrant behaviour of topological quantum phase with hydrostatic pressure would help in finding a correlation between topology and XMR effect through experiments.
The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi$_2$Se$_3$, this inversion occurs at the $Gamma$ point. For bulk Bi$_2$Se$_3$, we have analyze d the effect of arbitrary strain on the $Gamma$ point band gap using Density Functional Theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi$_2$Te$_3$ supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution.
The effect of pressure on the thermal expansion of solid CH$_4$ is calculated for the low temperature region where the contributions from phonons and librons can be neglected and only the rotational tunnelling modes are essential. The effect of press ure is shown to increase the magnitude of the peaks of the negative thermal expansion and shifts the positions of the peaks to the low-temperature region, which goes asymptotically to zero temperature with increasing pressure. The Gruneisen thermodynamical parameter for the rotational tunnelling modes is calculated. It is large, negative, and increases in magnitude with rising pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا