ﻻ يوجد ملخص باللغة العربية
The finite temperature phase diagram of two-dimensional dipolar bosons versus dipolar interaction strength is discussed. We identify the stable phases as dipolar superfluid (DSF), dipolar Wigner crystal (DWC), dipolar hexatic fluid (DHF), and dipolar normal fluid (DNF). We also show that other interesting phases like dipolar supersolid (DSS) and dipolar hexatic superfluid (DHSF) are at least metastable, and can potentially be reached by thermal quenching. In particular, for large densities or strong dipolar interactions, we find that the DWC exists at low temperatures, but melts into a DHF at higher temperatures, where translational crystaline order is destroyed but orientational order is preserved. Upon further increase in temperature the DHF phase melts into the DNF, where both orientational and translational lattice order are absent. Lastly, we discuss the static structure factor for some of the stable phases and show that they can be identified via optical Bragg scattering measurements.
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correl
The recent advances in creating nearly degenerate quantum dipolar gases in optical lattices are opening the doors for the exploration of equilibrium physics of quantum systems with anisotropic and long-range dipolar interactions. In this paper we stu
We study the emergence of several magnetic phases in dipolar bosonic gases subject to three-body loss mechanism employing numerical simulations based on the density matrix renormalization group(DMRG) algorithm. After mapping the original Hamiltonian
It is generally believed that a Wigner Crystal in single layer graphene can not form because the magnitudes of the Coulomb interaction and the kinetic energy scale similarly with decreasing electron density. However, this scaling argument does not ho
We determine the quantum ground state of dipolar bosons in a quasi-one-dimensional optical lattice and interacting via $s$-wave scattering. The Hamiltonian is an extended Bose-Hubbard model which includes hopping terms due to the interactions. We ide